

Spin-lattice relaxation in $\text{Bi}_4\text{Ge}_3\text{O}_{12}$ - quadrupole and magnetic mechanisms

E.N. Morozova ^{a,1}, A.A. Gippius ^a, D.F. Khozeev ^a, V.G. Orlov ^b, M.P. Shlikov ^b,
Yu.F. Kargin ^c

^a *Moscow State University, 119899, Moscow, Russia*

^b *Russian Research Center Kurchatov Institute, 123182, Moscow, Russia*

^c *Institute of General and Inorganic Chemistry, RAS, 117907, Moscow, Russia*

Abstract

The nuclear spin-lattice relaxation was studied in the $\text{Bi}_4\text{Ge}_3\text{O}_{12}$ single crystal by ^{209}Bi NQR. Experimental recovery curves for all ^{209}Bi NQR transitions of nuclear spin $I=9/2$ in the temperature range 10-230K were described by the single effective spin-lattice relaxation time T_1^* . The temperature dependence of $1/T_1^*$ was close to T^n law with $n=2.4$ - 2.7. Theoretical treatment was given for the nuclear spin-lattice relaxation in the multi-level system for the case of single-axial crystalline electric field. Both quadrupole and magnetic mechanisms of relaxation were taken into account. It was shown that magnetic mechanism contributes noticeably to the spin-lattice relaxation in $\text{Bi}_4\text{Ge}_3\text{O}_{12}$ at $T \leq 50\text{K}$.

Key words: spin-lattice relaxation; ^{209}Bi NQR

1. Introduction

$\text{Bi}_4\text{Ge}_3\text{O}_{12}$ belongs to the class of complex Bi-oxides (α - Bi_2O_3 , $\text{Bi}_3\text{O}_4\text{Br}$) which exhibits unusual magnetic properties [1]. Local ordered magnetic fields of about 30 G were revealed in the $\text{Bi}_4\text{Ge}_3\text{O}_{12}$ single crystal by ^{209}Bi NQR experiments [2]. In the present paper the nuclear spin-lattice relaxation was studied in the $\text{Bi}_4\text{Ge}_3\text{O}_{12}$ single crystal by ^{209}Bi NQR spin-echo technique.

The spin-lattice relaxation rate was measured using the saturation recovery method. The recovery curves for all four transitions are successfully fitted by single exponential function with characteristic time T_{1i}^* . The temperature dependencies of $1/T_{1i}^*$ are close to T^n law with $n = 2.4$ -2.7.

2. Results and discussion

The theoretical study of the relaxation process is based on the master equation:

$$\frac{dN_i}{dt} = \sum_j (W_{ij}N_j - W_{ji}N_i). \quad (1)$$

where N_i is the population of the i -th level, W_{ij} is the probability of transition from the j -th to the i -th level, the sum over j is taken for all allowed transitions ($\Delta m = \pm 1$ and $\Delta m = \pm 2$) between the levels for the spin $I=9/2$. The probabilities for these transitions were calculated using the formulae [3]:

$$\frac{W_{m\pm 1}^m}{W_1} = (2m \pm 1)^2 (I \mp m) K \quad (2)$$

$$\frac{W_{m\pm 2}^m}{W_2} = (I \mp m)(I \mp m - 1)(I \pm m + 2) K \quad (3)$$

where

¹ Corresponding author. E-mail: morozova@mail.ru

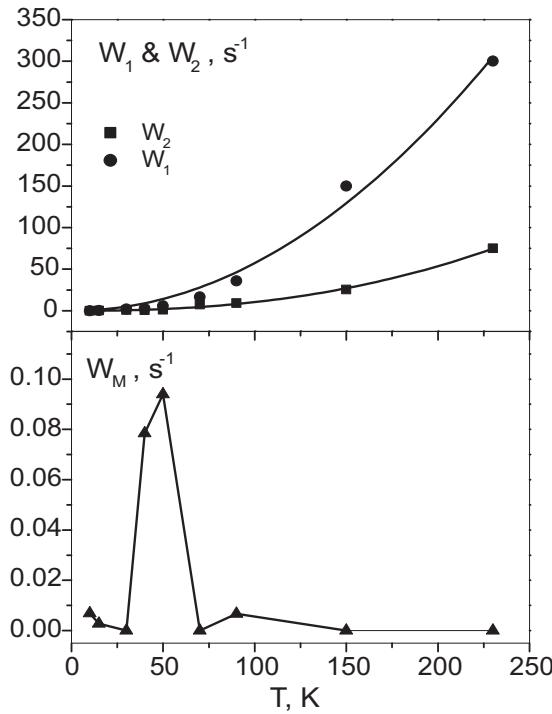


Fig. 1. The temperature dependence of parameters W_1 , W_2 (top) and W_M (bottom). Solid lines are the best fit by the power law: $W(T) \propto T^n$ with $n = 2.0(1)$ for W_1 and $n = 2.4(1)$ for W_2 . In $W_M(T)$ plot solid line is a guide for the eye.

$$K = \frac{(I \pm m + 1)}{2I^2(2I - 1)^2}, \quad (4)$$

W_1 and W_2 are unknown quantities.

Transition probabilities for the $\Delta m = \pm 1$ magnetic relaxation processes were defined in [4]:

$$\frac{W_{m\pm 1,M}^m}{W_M} = (I \mp m)(I \pm m + 1). \quad (5)$$

The relaxation process can be written in the following form:

$$\frac{n_i}{n_0} = \alpha_i + \sum_{j=1}^4 c_j a_{ij} e^{-\lambda_j \tau} \quad (6)$$

the values of λ_j determine the time scale of relaxation, the pre-exponential factors $c_j a_{ij}$ are responsible for the form of the relaxation curve. An effective calculated relaxation time $T_1^{(i)}$ for the i -th transition is defined by:

$$\frac{d}{dt} \frac{n_i}{\alpha_i n_0} \Big|_{t=0} = -\frac{W_i}{108\alpha_i} \sum_{j=1}^4 a_{ij} c_j \lambda_j \equiv \frac{1}{T_1^{(i)}}. \quad (7)$$

The fitting procedure for the effective relaxation times $T_1^{(i)}$ and T_{1i}^* was carried out numerically to define a temperature dependence of parameters W_1, W_2

and W_M . The details of theoretical calculation are presented in [5].

The effective calculated relaxation rates $1/T_1^{(i)}$ clarify the meaning of the effective experimental relaxation rates R_{1i}^* for the multi-level system as the weighted sum of the "true" relaxation rates. The 'dominant' contribution (quadrupole or magnetic) determines the relaxation process, therefore the time evolution of the multi-level system to equilibrium state can be described by a single time constant.

As follows from Fig.1, the parameters W_1 and W_2 grow rapidly close to the parabolic law similar to the temperature behavior of the experimental effective relaxation rates R_{1i}^* . It is necessary to note that throughout the studied temperature range 10 - 230 K the values of W_2 parameter were noticeably smaller than those of W_1 . So the magnitude of the ratio $\gamma = W_2/W_1$ never exceeded 0.5. In some previous works γ was taken equal to 1 [6], [7]. The bottom panel in Fig. 1 shows the temperature dependence of W_M . Basing on the obtained results we can conclude that at $T \geq 70$ K the spin-lattice relaxation in $\text{Bi}_4\text{Ge}_3\text{O}_{12}$ is governed mainly by the quadrupolar mechanism. At $T \leq 50$ K the contribution of the magnetic mechanism is quite noticeable. According to (5), the probabilities of transitions governed by the magnetic mechanism attain rather large. At low temperatures, when W_1 is not large (Fig.1), even small values of W_M contribute significantly to the relaxation.

3. Conclusion

It was demonstrated that for the case of single-axial EFG and weak local magnetic field realized in $\text{Bi}_4\text{Ge}_3\text{O}_{12}$ it is possible to separate the contributions of quadrupole and magnetic mechanisms to relaxation. At $T > 70$ K the spin-lattice relaxation is governed mainly by quadrupole mechanism, while at low temperatures the contribution of magnetic mechanism is noticeable.

References

- [1] E.A. Kravchenko, V.G. Orlov, Z. Naturforsch. **49a** (1994) 418.
- [2] E.A. Kravchenko *et al.*, J.Magn. Magn. Mater. **224** (2001) 249.
- [3] A.C. Daniel, W.G. Moulton, J.Chem. Phys. **41** (1964) 1833.
- [4] E.R. Andrew, D. Tunstall, Proc.Phys. Soc. **78** (1961) 1.
- [5] A.A. Gippius *et al.*, J.Phys.: Condens. Matter **14** (2002) 3891.
- [6] T. Rega, J. Phys.: Condens. Matter **3** (1991) 1871.
- [7] I. Watanabe, J.Phys.Soc.Japan **63** (1994) 1560.