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Abstract

We present the first experimental determination of the time autocorrelation C(#,t) of magnetization in the non-
stationary regime of a spin glass. Quantitative comparison with the corresponding response, the magnetic suscep-
tibility x(t',t), is made possible by the use of a new experimental setup allowing both measurements in the same
conditions. Clearly, we observe a non-linear fluctuation-dissipation relation between C' and x, depending weakly
on the waiting time ¢'. Following theoretical developments on mean-field models, and lately on short range ones,
it is predicted that in the limit of long times, the x(C) relationship should become independent on #. A scaling

procedure allows us to extrapolate to the limit of long waiting times.
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1. Introduction

The fluctuation dissipation theorem (FDT) [1,2]
which links the response function of a system to its
time autocorrelation function, is from more than fifty
years ago one of the masterpieces of statistical physics.
Nevertheless, FDT applies only to ergodic systems
at equilibrium. Yet, such systems represent a very
limited part of natural objects, and there is now a
growing interest on non-ergodic systems and on the
related challenging problem of the existence of fluctua-
tion dissipation (FD) relations valid in off-equilibrium
situations.

In non-stationary systems, FDT is not expected to
hold. A quite general FD relation can be written as
[3,4] R(t',t) = BX(t',)0C(t',t)/0t', where R(t',t) is
the impulse response of an observable to its conjugate
field, C(t',t) the autocorrelation function of the ob-
servable and 8 = 1/kgT. FDT corresponds to X = 1.
Determination of X, the fluctuation-dissipation ratio
(FDR), or of an “effective temperature”, Toyy = T/ X,
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is the aim of many recent theoretical studies which pre-
dicted a generalization of FDT [5,3,4] in “weak ergod-
icity breaking” systems [6].

2. Experimental

We have investigated the FD relation in the insulat-
ing spin glass CdCri.7Ing.3S4 [7], an already very well
known compound, with T, = 16.7K. Above Ty, the
susceptibility follows a Curie-Weiss law x = C/(T'—©)
where C corresponds to ferromagnetic clusters of about
50 spins, and © ~ —9K [8]. The sample is a pow-
der with grain sizes around 10 pm, embedded in silicon
grease to insure good thermal contact between grains,
and compacted into a coil foil cylindrical sample holder
5 mm wide and 40 mm long. The two times dependence
of the magnetic relaxation (TRM) of this compound
was extensively studied [9].

In principle, SQUID measurement of magnetic fluc-
tuations is very simple [10,11]. The difficulty lies in
the extreme weakness of the thermodynamic fluctu-
ations (of the order of the response to a field about
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1077G in our case). Our system, where the pick-up
(PU) coil is a third order gradiometer, allows time
analysis of the magnetic fluctuations signal over up to
2000 s of sample fluctuations with more than 20 dB
of signal/noise ratio. Moreover, in the non-stationary
regime, the time autocorrelation of magnetic fluctua-
tions C(t',t) = % >, (my(t')m,(t)), where m; is the
elementary moment at site ¢, must be determined as
an ensemble average over a large number of records of
the fluctuation signal, each one initiated by a quench
from above T, (“birth” of the system). And finally,
we want to compare quantitatively correlation and
relaxation data If the relaxation function o(t',t) =
~ Z m;(t)) /H; is measured using a classical mag-
netometer with homogeneous field, quantitative com-
parison between C and o is almost impossible due to
the strong discrepancy between the coupling factors
in both experiments. Therefore, we have developed a
new bridge setup depicted in Fig.la, allowing mea-
surements of both fluctuations and response. The PU
coil of self inductance Lo is connected to the input coil
of a SQUID, of self inductance Ls. The whole circuit
is superconducting. Relaxation measurements use a
small coil [ inserted in the pick-up circuit, and coupled
inductively with mutual inductance M to an excita-
tion winding. A current Iy injected in the excitation
results in a field induced by the PU coil itself (< 1mG
here, clearly in the linear regime though inhomoge-
neous), and the sample response is measured by the
SQUID. To get rid of the term Lo, the sample branch
is balanced by a similar one without sample, excited
oppositely (see Fig.1la). Detailed analysis of the sys-
tem will be published elsewere. The main features are
as follows.

@)
D.C SQUID ° @
8 8
s
m 8
SAMPLE &
1550 ® °
(b)
15
—~ Slope AIT
210 \
;, 0.5
2
o
0.0
10 20 30

Cy(t-t) (10° V¥

Fig. 1. a) Schematic of the detection circuit. The pick-up coil
(right side), containing the cylindrical sample, is a third order
gradiometer made of +3 -6 46 -3 turns. b) Calibration is
obtained by measuring relaxation versus correlation in a high
conductivity copper sample at equilibrium at 4.2K.

As the fluctuations of elementary moments in the
sample are homogeneous and spatially uncorrelated at
the scale of the PU, the SQUID output voltage auto-
correlation is given by:

2
(Lo +2Ls)?

where G is the gain of the SQUID (Vs = GIg). Q =
>, h?(r;) where the index i refers to a moment site, is
the coupling factor to the PU, including demagnetizing
field effects since h is the internal field.

The elementary moment response at site ¢ is
Ri(t',t) = 8{m;(t))/0h(r;,t"). Taking into account
that the medium is homogeneous, the relaxation func-
tion of the SQUID output voltage is given by

Cs(t',t) = (Vs(t')Vs(t)) = C(t',1)Q (1)
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Thus, the coupling factor ) disappears in the relation
between Cs and og, independently on the nature and
shape of the sample. There remains only the inductance
terms M, Lo and Ls. These being difficult to determine
with enough accuracy, absolute calibration was per-
formed using a copper sample of high conductivity, by
measuring og(t',t) and Cs(t',t) — computed by stan-
dard FFT algorithm — at 4.2K (*He boiling temper-
ature at normal pressure): with this ergodic material,
the relation between both measured quantities is linear
with slope A/T, where A is the sample independent
calibration factor (see Fig.1b). From the knowledge of
A, determined at 4.2K, the system is equivalent to a
thermometer, i.e. the FDT slope is known ezxactly at
any temperature.

In the spin glass sample, Cs(t',t) and os(t',t) were
measured at T" = 0.675, 0.87, and 0.97} after quench
from a temperature T & 1.27T,. To get a precise defini-
tion of the “birth” time, a minimum value of 100 s was
chosen for t'. The autocorrelation was determined from
an ensemble of 320 records of up to 12000 s of the fluc-
tuation signal. The ensemble averages were computed
in each record from the signal at ', averaged over §t' <
t'/20, and the one at t, averaged over §t < (t—t')/10 —
the best compromise allowing a good average conver-
gence still being compatible with the non-stationarity
— , and averaging over all records. As there is an arbi-
trary offset in the SQUID signal, the connected correla-
tion was computed. Nevertheless, this was not enough
to suppress the effect of spurious fluctuation modes of
period much longer than 2000 s, giving a non-zero av-
erage offset on the correlation results. Thus, as a first
step, we have plotted all correlation data, taking as
the origin the value of (VZ(t')). Due to the elementary
measurement time constant this last term corresponds
to an average over t — t' about 107 2s, i.e. a range of
(t — t')/t' corresponding to stationary regime. Thus,
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Fig. 2. Aging and scaling of (a) correlation (b) relax-
ation at T = 0.87,. Both are measured for waiting times
t’ = 100, 200, 500, 1000, 2000, 5000 and 10000 seconds
from bottom to top. Reported error-bars on correlation have
a length of two standard-deviation, corresponding to aver-
ages over records. In insets, scaling of the aging parts versus
¢ = (t'7* — 171 /(1 — p), using p = 0.87. The stationary
parts are found to obey a power-law decrease with an exponent
a = 0.05.

all Cs data are shifted by a common offset (. The
result at 0.87, is shown in Fig.2a (right sided scale),
as a function of t — t' for values of ¢ from 100 s to
10000 s. Residual oscillations —and large error bars—
for ' = 100s reveal the limit of efficiency of our av-
eraging procedure. Corresponding relaxation data are
plotted on Fig.2b. In both results, one can see that the
curves merge at low t — ¢, meaning that they do not
depend on t (stationary regime). At t —t' > t', they
strongly depend on #, the slower decay corresponding
to the longer t'.

Since zero of correlation is unreachable in experimen-
tal time, correction of the offset could be obtained from
the knowledge of C'(t,t). Nevertheless, due to cluster-
ing, C(t,t) depends on temperature and cannot be de-
termined from the high temperature susceptibility. In
canonical compounds like 1% Cu:Mn [12], with negli-
gible clustering, the field-cooled susceptibility is tem-
perature independent in agreement with the PaT hy-
pothesis [14,15], yielding C(¢,t) = Tgxrc (T). We used
a generalization of this relation with the condition that
a smooth dependence of C(t,t;T)/T must result [16].
This was obtained by using for Ty a slightly different
value, T; = 17.2K. Then, from the value of the cali-
bration factor A, and writing C(¢,¢;T) = 17.2xrc(T),
Cs(t,t;T) can be determined, and suppression of the

offset can be performed by using the x(C') plot, first in-
troduced by Cugliandolo and Kurchan [3]. We plot the
normalized susceptibility function x(¢',t) = 1—o (¢, t)
where o(t',t) = os(t',t)/os(t,t) (note that o(t,t) =
yrc) versus normalized autocorrelation C (¢, £) — Co =
(Cs(t',t) — Co)/Cs(t,t;T) for all experimental values
of ¢'. In this graph, the FDT line has slope —T /T" and
crosses the C axis at C = 1. On the data, a clear linear
range appears at large C' (small ¢t — t'), with slope cor-
responding to the calculated FDT slope with less than
3% error. Suppression of the correlation offset is then
obtained by horizontal shift of the data. This adjust-
ment is of course based on a rough ansatz on C(¥,¢;T)
which needs further justifications, but we stress that
the induced uncertainty concerns only the position of
the zero on the C axis, and not the shape and slope of
the curves. The result at the three investigated temper-
atures is shown in Fig.3. With decreasing C' (increas-
ing t —t' > t’), the data points depart from the FDT
lines. Despite the scatter of the results, a tendency for
the data at small ¢’ to depart the FDT lines at larger
values of C' is clear.

3. Discussion

In the asymptotic limit of large times, in the SK
model, the FDR should depend on time only through
the correlation function: X (¥,t) = X(C(t',t)) for t'
(and ¢t > t') — oco. The dependence of X on C would
reflect the level of thermalization of different degrees
of freedom within different timescales [4]. Thus, the
integrated forms of the FD relation would become

x(t',t) = B f c((:, ;))X C)dC (susceptibility function)

and o(t',t) ﬁfc(t & X (C)dC (relaxation function).
They would depend on t and ¢ only through the value
of C. Analytical [13] and numerical [14] investigations
confirm the above properties in short range models.
Experimentally, our results show that it is impos-
sible to fulfill the condition of timescales separation
underlying the theory. The left sided scales in Fig.2a
and b correspond to C(t',t) and o (t',t) respectively, at
0.8Ty. In former works, it was shown that the whole re-
laxation curves could be scaled as the sum of two con-
tributions, one stationary and one non-stationary [9]

ot )= (1= A)(1+({t—t)/to) " +Ap(C),  (3)

where to is an elementary time of order 107! s, ¢ is
a scaling function of an effective time parameter ¢ o
t'=# —t"1=* depending on the sub-aging coefficient p <
11[9], and a can be determined with good precision from
the stationary power spectrum of fluctuations S(w) o
w* 1. The inset in Fig.2b displays the result of the
scaling on the relaxation curves with a = 0.05, A =
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Fig. 3. FD-plot. Relaxation functions are plotted versus cor-
relation functions at each temperature for each t’. The lines
(FDT lines) are calculated from the calibration obtained with
the copper sample. The full lines represent the scaling extrap-
olation for ¢’ — co. The branching points with the FDT lines,
correspond to C = gga.

0.21 and p = 0.87. As shown in the inset of Fig.2a,
the scaling works rather well on the autocorrelation
curves with the same exponents, but now, gga, the
Edwards Anderson order parameter, replaces A. We
get qgga = 0.37. These results show clearly that the
stationary part of the dynamics is still important yet
in the aging regime, i.e. that the limit of long ¢’ is not
reached within the timescale of our experiments (in
fact, timescale separation is realized if ' > 7 where T is
the observation time such that Cstqt(7) < gra). Even
if the long t' limit for X(C) does exist, it is not reached
in the plot of data in Fig.3 and a t' dependence of the
X(C) curves is expected.

Nevertheless, if granted, the scaling gives the long
time limit of the non-stationary part of the dynam-
ics, allowing a plot of the long times asymptotic non-
stationary part of the x(C) curve. Of course, here we
verify it only over 2 decades of time, up to ' = 10000 s,
but it was proven to be relevant on TRM up to ¢ =
100000 s [7]. The full lines in Fig.3 are obtained by plot-
ting the smoothed curves of aging parts of x(¢) versus
C(¢) at the three temperatures investigated. Accord-
ing to theoretical conjectures, d%(é) /dé would rep-
resent the static quantity z(g) [13]. One can see that
the curves does not align perfectly, though they follow
roughly a law like ¥ = (1 — C)”® with B ~ 0.5 cor-
responding astonishingly to the mean field prediction.
Nevertheless, this result in based on the validity of our
time scaling at all timescales, an hypothesis whose the-
oretical justifications are still lacking.

4. conclusions

In conclusion, we have presented the first experimen-
tal determination of the non stationary time autocor-
relation of magnetization in a spin glass, an archetype
of a complex system. With the help of the time scal-

ing properties of both the relaxation and the autocor-
relation, we were able to propose a first experimental
approach of a possible generalization of FDT to non-
stationary systems.
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