

Transport Properties of In_2Bi and InBi Single Crystals

Katsuhiro Nishimura ^{a,1}, Takayuki Yasukawa ^a, Katsunori Mori ^a

^aFaculty of Engineering, Toyama University, Toyama 930-8555, Japan

Abstract

Specific heat and thermoelectric power measurements were carried out for In_2Bi and InBi using single crystals. Applying an external field at the specific heat measurement of In_2Bi enabled us to estimate a magnitude of the specific-heat discontinuity between the normal and superconducting states at a transition temperature. Debye temperatures were estimated to be $92(\pm 8)$ K for In_2Bi and $120(\pm 15)$ K for InBi below 5 K. Thermoelectric power of InBi was found to be anisotropic against the crystallographic axes.

Key words: In_2Bi , InBi , specific heat, thermopower

1. Introduction

Indium and bismuth are known to form three kinds of intermetallic compounds: InBi , In_5Bi_3 and In_2Bi . Whereas In_5Bi_3 and In_2Bi show superconductivity at ambient pressure [1][2], InBi only undergoes a superconducting transition with an externally applied pressure [3]. This work aims to compare transport properties between InBi and In_2Bi to find a hint why In_2Bi is a superconductor, but InBi is not. The specific heat of InBi has been studied in detail [4]. Present results of InBi will be compared with the previous ones to find a suitable way of data analysis.

2. Results and discussion

Samples were prepared by melting high quality (more than 5N grade) constituents together in a pyrex glass tube in vacuum. A polycrystalline ingot in the glass tube was passed through a Bridgeman furnace to be grown into a single crystal. The residual resistance ratios of the resultant samples were approximately 110 for InBi and 45 for In_2Bi . Both the compounds ex-

hibited diamagnetism in the temperature range from 2 to 300 K with fields up to 7 T at measurements by SQUID. Magnetization of In_2Bi at the c-axis showed de Haas-van Alphen oscillations with a frequency of about $80(\pm 2)$ T, which consistsents with the previous report [5].

Fig. 1 shows temperature dependence of the specific heat, C , of InBi measured by an adiabatic heat-pulse method. The inset in Fig. 1 displays a C/T vs. T^2 curve, which appears to slightly deviate from a linear relation between C/T and T^2 .

On the basis of the Debye model, the low-temperature specific heat is approximated as $C = \gamma T + \alpha T^3$, implying a constant Debye temperature, θ_D , where γ denotes the electronic specific heat coefficient. It is widely accepted, however, that the effective value of θ_D varies with temperature, having a minimum between $\theta_D/2$ and $\theta_D/50$ [6]. This kind of variation of θ_D has been observed in InBi , in which a minimum θ_D of about 100 K was found around 9 K [4].

We attempted, therefore, to fit the C/T vs. T^2 data to a quadratic equation, instead of a linear function. The best fit was found at $\gamma = 4 (\pm 3)$ mJ/mole·K² and $\theta_D = 120(\pm 15)$ K. The extracted value of θ_D is close to the previously reported one: 139.8 K [4].

Experimental results of specific heat of In_2Bi is illustrated in Fig. 2. There is a small peak originated in

¹ Corresponding author. Fax: +81-76-445-6703. E-mail: nishi@eng.toyama-u.ac.jp

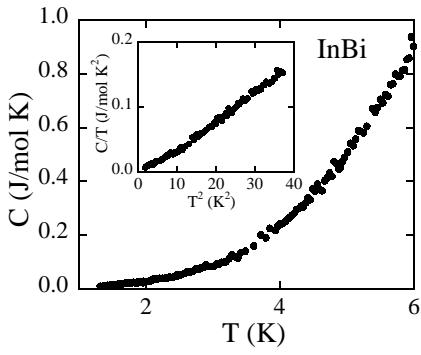


Fig. 1. C vs. T curve, and C/T vs. T^2 curve (inset) of InBi.

a superconducting transition at 5.9 K ($=T_C$). The inset in Fig. 2 shows differences of specific heat between the superconducting, C_S , and normal, C_n , states ; C_n were obtained from the specific heat acquired under an external field of 0.5 T which is higher than the critical field: $B_{C2} = 0.2$ T [7]. A jump of the specific heat at the transition was estimated as $\Delta C(T = T_C) = C_S - C_n = 0.1$ J/mol-K. The same data, C_n , were used to deduce γ and θ_D values: $\gamma = 8(\pm 7)$ mJ/mol-K² and $\theta_D = 92(\pm 8)$ K. In₂Bi feels relatively soft, as opposed to quite brittle InBi at room temperature. Thus, It is reasonable that the θ_D value of In₂Bi is lower than that of InBi.

Using the extracted value of γ , a magnitude of the specific heat discontinuity, $\Delta C/\gamma T_C$, is calculated to be 2.1. The BCS theory predicted $\Delta C/\gamma T_C = 1.43$, and the two-fluid model calculation resulted in $\Delta C/\gamma T_C = 2$ [8]. Experimental values of the magnitude have been observed between 1 and 3.

Thermopower, S , were measured applying temperature gradient along the crystallographic axis directions as shown in Fig. 3(a) and 3(b). Since InBi and In₂Bi show diamagnetism, main contributions to S would be brought about by a diffusion process described by the Mott expression: $S_d = (\pi^2 k^2 T / 3e) (\partial \ln \sigma / \partial \epsilon)_{E_F}$ [9]. All the data lines of S seem to roughly follow the Mott relation; S values decreased toward zero as temperature was lowered. S of InBi indicated that a majority carrier at the a-axis was electrons, and that at the c-axis was holes.

In conclusion, the present results of InBi and In₂Bi did not exhibit pronounced differences in C and S . This work is extending to In₅Bi₃ to study further In-Bi series.

References

- [1] K. Mori, N. Tamura, Y. Saito, J. Phys. Soc. Jpn **50** (1981)1275.
- [2] K. Mori, Y. Saito, K. Sato, Physica B **107** (1981) 477.

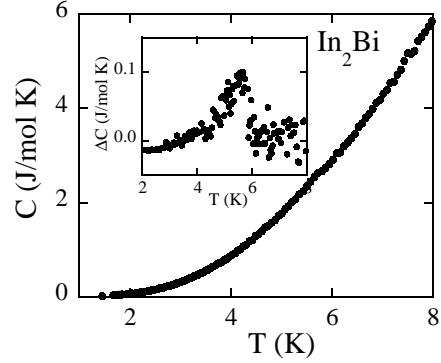


Fig. 2. C vs. T curve of In₂Bi without field. The inset presents a result of subtracting C with field of 0.5 T from C without field; $\Delta C = C(0T) - C(0.5T)$.

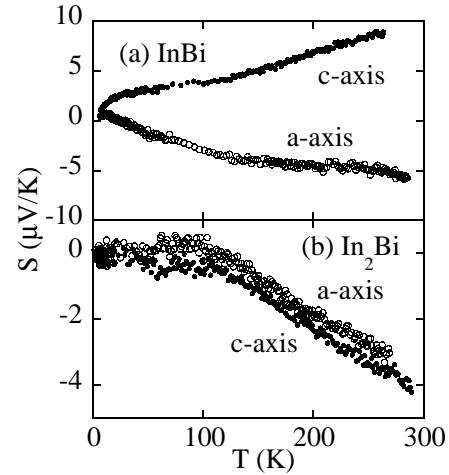


Fig. 3. Thermopower of InBi (a) and In₂Bi (b) along the crystallographic axis directions.

- [3] V.G. Tissen, V.F. Degtyareva, M.V. Nefedova, E.G. Pomyatovskii, W.B. Holzapfel, J. Phys. Condens. Matter. **10** (1998) 7303.
- [4] D.L. Martin, Can. J. Phys. **59** (1981) 567.
- [5] Y. Saito and K. Mori, J. Phys. Soc. Jpn **42** (1977) 349.
- [6] E.S.R. Gopal, in: Specific Heats at Low Temperature, Plenum Press, New York, 1966.
- [7] M.A.C. Devillers and A.R. de Vroomen, Solid State Comm. **27** (1978) 447.
- [8] C.G. Kuper, in: An Introduction to the Theory of Superconductivity, Clarendon Press, Oxford, 1968, Ch. 2.
- [9] F.J. Blatt, P.A. Schroeder, C.L. Foiles, in: Thermoelectric Power of Metals, Plenum Press, New York, 1976, Ch. 2.