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Abstract

We investigate quantum phase transitions in a quasi-one dimensional orthogonal-dimer S = 1 spin chain by means
of the exact diagonalization. By taking into account the effect of the interchain coupling, we discuss how the distinct
spin-gap phases found in the orthogonal-dimer chain are adiabatically connected to those in the two-dimensional
Shastry-Sutherland model for the compounds SrCu2(BO3)2 and Nd2BaZnO5 .
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Frustrated quantum spin systems have attracted
current interest. A typical example is the cuprate
SrCu2(BO3)2,[1] where the Cu2+ ions sit on the
orthogonal-dimer structure, [2,3] shown in Fig. 1. In
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Fig. 1. The orthogonal-dimer structure. The bold, thin and

dashed lines represent the exchange couplings J , J′ and J′′,
respectively.

this material, novel magnetic properties were observed
such as magnetization plateaus, excited states without
dispersion,[1,4] which stimulate further theoretical in-
vestigations of the Shastry-Sutherland model.[3,5,6]
More recently, a new orthogonal-dimer compound
Nd2BaZnO5 was synthesized,[7] where the local mo-
ment J = 9/2 shows an antiferromagnetic order below
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TN = 2.4K. Therefore, it is desirable to clarify how
a higher spin generalization (S > 1/2), together with
the competing exchange couplings, affects the ground
state properties of such frustrated spin systems.

In our previous paper,[8] we have dealt with the
orthogonal-dimer spin chain (J′′ = 0) with an arbi-
trary spin S and have shown that first-order quan-
tum phase transitions occur (2S) times. In particular,
in the S = 1 system, the Haldane spin-gap phase ex-
ists between the dimer and the plaquette phases. It is
naively expected that the intermediate phase is not sta-
ble against the interchain coupling since such a quasi-
one dimensional S = 1 spin chain is usually driven to
the antiferromagnetic phase.[9–11] In this paper, we
deal with the S = 1 orthogonal-dimer system by means
of the exact diagonalization to discuss how the inter-
chain coupling affects the spin gap phases realized in
the chain.

We consider here the model Hamiltonian with the
orthogonal-dimer structure as,

H =
∑

(ij)

JijSi · Sj, (1)

where Sj indicates the S = 1 spin operator at the jth
site, and Jij = J, J ′ and J ′′ represent the intra-dimer,
the inter-dimer and the interchain couplings, which are
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all assumed to be antiferromagnetic. To clarify how
the spin-gap phases in the chain system are adiabati-
cally connected to those in the 2D Shastry-Sutherland
model, we perform the exact diagonalization of the
orthogonal-dimer S = 1 spin system (N = 4 × 4) with
periodic boundary condition. The results are shown in
Fig. 2. When J ′′ = 0, the system is reduced to the
S = 1 orthogonal-dimer spin chain, where first-order
quantum phase transitions occur among three spin-gap
phases. [8] Although the introduction of the interchain
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Fig. 2. The phase diagram of the orthogonal-dimer spin S = 1

system. The solid lines indicate the phase boundary where

the first-order transition occurs. The dashed line indicates the

phase boundary between the plaquette and the antiferromag-

netically ordered phases, where the second-order transition oc-

curs.

coupling J ′′ enhances antiferromagnetic correlations,
the dimer phase is still stable in the small J ′ and J ′′

region since the assembly of dimers shown by the bold
line in Fig. 1 is the exact eigenstate of the Hamiltonian.
It is remarkable that the frustration-induced Haldane
phase in the chain persists even in the 2D Shastry-
Sutherland model (J′ = J ′′). The nature of the Hal-
dane phase is clearly described by the Valence Bond
Solid, [12] where the spin-gap state is represented by
the assembly of the singlet bonds between the decom-
posed S = 1/2 spins. In the frustration-induced Hal-
dane phase, one of the decomposed S = 1/2 spins at
each site is connected to the nearest neighbor spin to
form the singlet-dimer on the strong-coupling bond,
as shown in the inset of Fig. 2. Another decomposed
spin is connected to other three spins to form the pla-
quette singlet. Therefore, this phase is composed of a
periodic arrangement of the dimer and the plaquette
singlets discussed in the S = 1/2 Shastry-Sutherland
model, [5] and is stable against the interchain coupling.
In the plaquette phase, the spin gap continuously de-
creases with increasing the interchain coupling J′′, and
the system may be driven to the antiferromagnetically
ordered phase. Though it is difficult to determine this
boundary, we think that the plaquette phase may not
persist on the Shastry-Sutherland line (J′ = J ′′) since

the system with S = 1 spins favors the classical Neel
ordered state, in contrast to the plaquette phase in the
S = 1/2 Shastry-Sutherland model.[5,13,14] We show
this phase boundary in Fig. 2 as a guide to eyes. Al-
though our calculation is restricted to a small system,
we believe that the frustration-induced spin-gap phases
discussed here give the correct phase diagram of the
S = 1 Shastry-Sutherland model.[2]
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