

Magnetic susceptibility of LaRu_3Si_2

Yutaka Kishimoto ^{a,1}, Yu Kawasaki ^a, Takashi Ohno ^a, Takehiko Hihara ^b,
Kenji Sumiyama ^b, Laxmi C. Gupta ^c, Goutam Ghosh ^c

^aDepartment of Physics, Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan

^bNagoya Institute of Technology, Nagoya 466-8555, Japan

^cTata Institute for Fundamental Research, Bombay 400 005, India

Abstract

The magnetization M of LaRu_3Si_2 has been measured to investigate the electronic states in the normal state. The magnetization curve (M - H curve) was analyzed with assuming that it consists of an intrinsic paramagnetic part and a ferromagnetic impurity part. The estimated intrinsic magnetic susceptibility is very dependent on temperature. This is attributable to a narrow band of conduction electrons with a high density of states, which is consistent with a considerably high superconducting transition temperature $T_s=6.5$ K.

Key words: LaRu_3Si_2 ; mixed valence; magnetization; magnetic susceptibility

The mixed valence phenomenon and Kondo effect in a ternary rare earth compound RRu_3Si_2 (R =rare earth element) have been a matter of interest [1–4]. CeRu_3Si_2 becomes superconducting below the superconducting transition temperature $T_s=1$ K while T_s of LaRu_3Si_2 is as high as 6.5 K. To understand this depression of superconductivity by the localized 4f moment and the strength of hybridization between 4f and conduction electrons in CeRu_3Si_2 , it is necessary to investigate the superconducting and magnetic properties in LaRu_3Si_2 without 4f electrons. In this paper, the magnetic field and temperature (T -) dependence of the magnetization M in the normal state of LaRu_3Si_2 is reported and the density of states (DOS) of conduction electrons is discussed.

A polycrystalline sample of LaRu_3Si_2 was prepared in an argon arc furnace by melting pure starting elements La, Ru and Si. The powder X-ray diffraction pattern shows that the sample is of a good single phase. The magnetization M was measured with a SQUID magnetometer.

M measured at 300 K is plotted against the applied field H (M - H curve) by closed circles in Fig.

1. The slope of this curve becomes smaller with increasing H and seems to be constant above 10 kOe. Similar behavior is observed at each measured temperature between 10 and 300 K. We consider $M=\chi H+M_{\text{ferro-imp}}(H)$, where χ is the magnetic susceptibility and $M_{\text{ferro-imp}}(H)$ is a magnetization of some ferromagnetic impurity. $M_{\text{ferro-imp}}(H)$ is considered to saturate and be constant above 10 kOe.

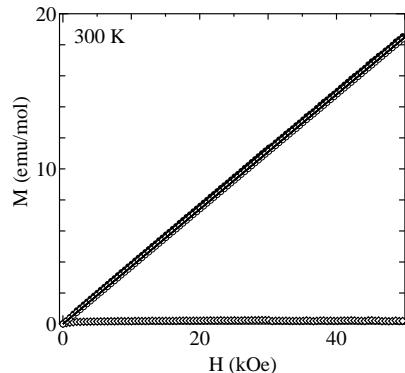


Fig. 1. Magnetization M (closed circles) measured at 300 K is decomposed into H -linear part (solid line and open circles) and impurity part $M_{\text{ferro-imp}}(H)$ (open diamonds).

¹ E-mail: yutaka@pm.tokushima-u.ac.jp

χH and the saturated value of $M_{\text{ferro-imp}}(H)$ are estimated by the least-squares fitting of $M = \chi H + \text{const.}$ to the data points above 10 kOe. The solid line and open circles give the χH . The open diamonds show $M_{\text{ferro-imp}}(H)$ obtained by subtracting χH from the raw M . The saturated value of $M_{\text{ferro-imp}}(H) = 0.22$ emu/mol is only about 1 % of $\chi H = 18.5$ emu/mol at 50 kOe. Therefore, M/H obtained at $H=50$ kOe can be used as χ . In our previous paper, we derived χ from the slope of the M - H curve above 10 kOe [5]. In this paper, we discuss the T -dependence of χ obtained from M/H measured at $H=50$ kOe.

In Fig. 2, the T -dependence of M/H measured at $H=50$ kOe is shown by open circles. M/H is T -dependent and is considered to consist of the intrinsic T -dependent part $\chi(T)$ reflecting the electronic correlation, the T -independent part χ_0 which contains the orbital contribution due to d electrons and spin contribution due to s and p electrons, and a paramagnetic impurity part $\chi_{\text{imp}}(T) = C/(T+\theta)$. In the material which has a narrow band or shows Kondo effect, $\chi(T)$ becomes a constant $\chi(0)$ at sufficiently low T . The least-squares fitting of $C/(T+\theta) + \text{const.}$ to the data points below 60 K gives $\chi(0) + \chi_0 = 4.29 \cdot 10^{-4}$ emu/mol, $C = 5.54 \cdot 10^{-4}$ K emu/mol and $\theta = 7.23$ K. These values are close to those obtained in the previous paper [5], $\chi(0) + \chi_0 = 4.32 \cdot 10^{-4}$ emu/mol and $C = 4.01 \cdot 10^{-4}$ K emu/mol. $\chi(T) + \chi_0 = (\chi - \chi_{\text{imp}}(T))$ shown by open triangles in Fig. 2 still depends on T at high temperatures. In general, χ of metals which have a narrow DOS or show Kondo effect shows the Pauli paramagnetism at low T and a Curie-Weiss law at high T .

In order to estimate $\chi(0)$, we plot $(\chi - \chi_{\text{imp}}(T))T$ against T in Fig. 3. At sufficiently low T , the data points are linear to T and the slope gives $\chi(0) + \chi_0$ as discussed above. The slope of this curve becomes smaller with increasing T , and is expected to become χ_0 at sufficiently high T because $\chi(T)$ is proportional to $1/T$. The least-squares fitting of $(\chi - \chi_{\text{imp}}(T))T$ to the data points above 260 K gives $\chi_0 = 3.20 \cdot 10^{-4}$ emu/mol. $\chi(0)$ is thus estimated to be $1.09 \cdot 10^{-4}$ emu/mol.

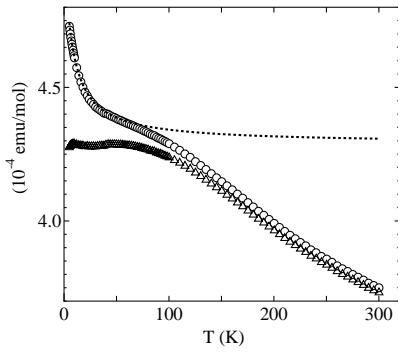


Fig. 2. Temperature dependence of χ (open circles) estimated from M/H measured at 50 kOe. The dotted curve shows the best fitted $\chi = \chi(0) + \chi_0 + C/(T+\theta)$ below 60 K. $\chi(T) + \chi_0$ is shown by open triangles.

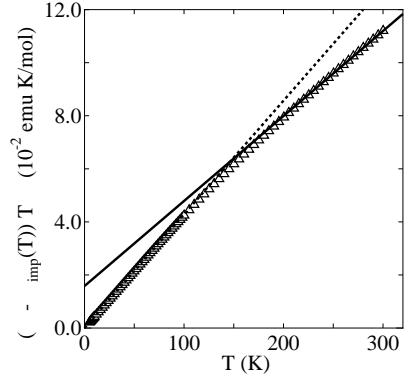


Fig. 3. Temperature dependence of $(\chi - \chi_{\text{imp}}(T))T$. The dotted line shows the linear fitting below 60 K. The solid line shows the linear fitting above 260 K.

$\chi_{\text{imp}}(T)T = \chi_0 T + \text{const.}$ to the data points above 260 K gives $\chi_0 = 3.20 \cdot 10^{-4}$ emu/mol. $\chi(0)$ is thus estimated to be $1.09 \cdot 10^{-4}$ emu/mol.

If $\chi(T)$ originates mainly from the narrow band of Ru 4d electrons, we can estimate DOS of 4d electrons $N_{\text{4d}}(\varepsilon_F)$ at Fermi level using the formula of Pauli paramagnetism $\chi(0) = 2 \mu_B^2 N_{\text{4d}}(\varepsilon_F)$. $N_{\text{4d}}(\varepsilon_F)$ is obtained to be 0.56 states/eV Ru spin. This value is nearly the same as $N_{\text{4d}}(\varepsilon_F) = 1.03$ states/eV Ru spin estimated in the previous paper [5]. These values are comparable to DOS of V 3d electrons $N_{\text{3d}}(\varepsilon_F) = 1.60$ states/eV V spin in C15 Laves phase HfV2 [6,7], in which a strongly T -dependent χ originates from the narrow band with high DOS. The large $N_{\text{4d}}(\varepsilon_F)$ may explain also the considerably high T_s of LaRu₃Si₂.

References

- [1] M. Escorne, A. Mauger, L. C. Gupta, C. Godart, Phys. Rev. B **49** (1994) 12051.
- [2] C. Godart, L. C. Gupta, Phys. Lett. A **120** (1987) 427.
- [3] U. Rauchschwalbe, W. Lieke, F. Steglich, C. Godart, L. C. Gupta, R. D. Parks, Phys. Rev. B **30** (1984) 444.
- [4] U. Rauchschwalbe, U. Ahlheim, U. Gottwick, W. Lieke, F. Steglich, C. Godart, L. C. Gupta, R. D. Parks, Proceedings of the 17th Conference on Low Temperature Physics, edited by U. Eckern, A. Schmid, W. Weber and H. Wuhl (North-Holland, Amsterdam, 1984) 231.
- [5] Y. Kishimoto, T. Ohno, T. Hihara, K. Sumiyama, G. Ghosh, L. C. Gupta, J. Phys. Soc. Jpn. **71** (2002) (in press).
- [6] Y. Kishimoto, N. Shibata, T. Ohno, Y. Kitaoka, K. Asayama, K. Amaya, T. Kanashiro, J. Phys. Soc. Jpn. **61** (1992) 696.
- [7] Y. Kishimoto, T. Ohno, T. Hihara, K. Sumiyama, K. Suzuki, Phys. Rev. B **64** (2001) 024509.