Fermi-liquid electromagnetic modes in layered conductors
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Abstract

We have analysed propagation of electromagnetic waves in a Fermi liquid of charge carriers in Q2D layered conduc-
tors. It is shown that high-frequency collective modes, which are absent in a gas of charge carriers, can be observed
even at low intensity of the Fermi-liquid interaction. The spectrum and amplitude of low-frequency weakly damp-
ing waves in a vicinity of the electron phase transition followed by the formation of diamagnetic domains, have

been obtained.
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Allowance for the Fermi-liquid correlation of conduc-
tion electrons results in appearance of high-frequency
collective modes which are absent in a gas of charge
carriers. By studying these waves one can make a de-
tailed investigation of correlation effects in the electron
subsystem of a conducting medium. In metals the ex-
perimental observation of Fermi-liquid waves is com-
plicated by the fact that their frequency w is close
to the plasma frequency wp, which is extremely high.
The specifics of the Q2D electron energy spectrum of
layered conductors gives rise to peculiar Fermi-liquid
modes, which are more easy to study experimentally.

We consider the propagation of the waves in a layered
conductor when the wave vector k as well as an external
magnetic field are directed along the normal to the
layers (z axis). In a layered conductor the dependence
of the charge carriers energy € upon their momentum
p can be represented in the form

= anp.
e(p) = an(vapy)COs hp . 1)
n=0
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Here a is the distance between layers, f is the Planck
constant. The factors &, (psz,py) fall off rapidly with
increasing n, so that the maximum value of €1 (pz, py)
at the Fermi surface (¢(p) = er) is equal to ner, where
the quasi-two-dimensionality parameter n is supposed
to be much less than unity.

The Fermi-liquid interaction between electrons is de-
scribed by means of the Landau correlation function,
which depends weakly on p, as well as the energy of
conduction electrons in a layered conductor.

Joint solution of the set of Maxwell equations and
kinetic equation for the electron distribution function
in the linear approximation in the electric field, makes
it possible to obtain the dispersion equation
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which determines the spectrum of collective electro-
magnetic modes. Here @ = w + i/, € is the cyclotron
frequency of conduction electrons, 7 is their free path
time, vr is the characteristic value of the Fermi veloc-
ity in the layers-plane, c is the velocity of light, A is the
parameter of the Fermi-liquid interaction, the disper-
sion law of electrons is supposed to be isotropic in the
layers-plane.
If the following condition is satisfied

K = w2{1 —+

13 June 2002



(WwF Q) - (w)? < (nkvr)? < (0 FQ)°, (3)

then at frequencies below the plasma frequency and
in the collisionless limit (7 — c0) there exist real so-
lutions for k of the equation (1), which are absent at
A = 0. They describe cyclotron modes arising from the
correlation effects in the conductor. The dispersion law
for these excitations has the form

wE =11 — (A= W2/ {0+ (4)

+/(nkvr)? = [(nkvr)? — Q2(X — w3 /k2c2)?},
Q < nkvp, 0 <A< 1.

The Fermi-liquid collective modes exist for k > kmin =
wp/eVA, and 80 Wmin = (wo/VA) £ Q, where wo =
wpnur /c. There are windows of transparency of the lay-
ered conductor for two high-frequency electromagnetic
waves with different polarization. The presence of two
waves with the frequencies w® is due to the fact that
the magnetic field lifts the degeneracy of the spectrum
of the electromagnetic field oscillations.

The penetration depth of the Fermi-liquid waves into
the conductor can be determined by measuring the sur-
face impedance, which relates the field at the surface
of the sample with the value of the total current. The
real component of the impedance, which determines
the electromagnetic wave absorption, attains a maxi-
mum in the range of wave frequencies where the Fermi-
liquid modes are excited.

At low temperature the oscillatory component of
magnetic susceptibility x = x.. of a conductor placed
in a quantizing magnetic field, may attain a value of the
order of unity. This is the case when allowance for mag-
netism of medium presents a self-consistent problem
even in conductors, in which magnetic order is absent.
When x > 1/4m, the homogeneous state of a conduc-
tor is unstable and a specimen is divided into domains
having different values of magnetic induction B [1].

When the inequality x> = |1 — 47y (Bo| << 1 is sat-
isfied, the stationary solution of the Maxwell equations

B(y) = Bo + Bi1(y),

H Y
= b sn S 5
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describes periodic domain structure with the period
Y = 404/1+ p? K(p) and the domain wall thick-
ness 6 = /4nro/k. Here Bo = (0,0, By) is an uni-
form component of the magnetic induction B, & =
KkBo(hQ/er), ro = vr/Q, K(u) = [ dt[(1 - t*)(1 -
p?t?)] 712 = K is a total elliptic integral of the first
kind. The modulus of the elliptic Jacobi’s function sn
defines the period Y and can be found from the con-
dition for the total thermodynamics potential to be at
its minimum as a function of Y with account of surface
energy at the domain boundaries.

Bi(y)

Represent the magnetic induction in the form
B(y7 th) = Bl(y) + B(yv Z,t)

where B(y, z,t) = b(y)exp (—iwt + ikz) is the small
alternating field and B1 = (0,0, B). Using Maxwell
equations and material equations we obtain the follow-
ing equation for the component B(y, z,t):
0> 0?H,

{iw + A(F~— — k*)HiwB. + A( o
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—C*K* {5 - k*B.} =0. (6)
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Here _ _
H.=(1-4mx(k,w))B.+
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A= CQUm/47TD, C = —c20y$/47TD,

D = OxxOyy — OxyOyx, = D/Ux:co'zzv

+12mBa(k,w)Bi (y) B. — 4my(k,w)

0ij = 0ij(k,w) are the components of the electrical
conductivity tensor, 8 = (er/hwBo)?, the coefficients
«, v are of the order of unity.

The dispersion equation for the wave propagating
along the magnetic field has the form

(—iw + AK*)? + C*k* =0 (7)

Without account of the quantum corrections to the
conductivity tensor this equation coincides with the
equation (2) and the spectrum of the wave is deter-
mined by the formula (4).

In the most important case when the dimensions of
the domains are great in comparison with the domain
wall thickness 6 (i.e. K (1) >> 1, (1—p®) << 1), theel-
liptical function sn(¢,1) in the interval 24/1 + p2 K <

y < 24/1+ p2K§ can be replaced by tanh(¢). Then,
one can represent the amplitude of the field b.(y) in
the form of a functional expansion with coefficients ex-
pressed by means of simple recurrent relations. The
component B. (y,t) differs essentially from zero in the
region of the domain wall only, i.e. in the vicinity of the
points y, = 2nK§/1 + p? where n is a whole number.
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