

# Fermi surfaces of $\text{YFe}_2$ and $\text{YNi}_2$

K. Nakada<sup>a,1</sup>, H. Shimizu<sup>b</sup>, H. Yamada<sup>b</sup>

<sup>a</sup>Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan

<sup>b</sup>Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

---

## Abstract

Electronic structures and Fermi surfaces of  $\text{YFe}_2$  and  $\text{YNi}_2$  with a cubic Laves phase structure are calculated in the non-magnetic state by using an FLAPW method. Angular dependences of the extremal cross-sectional areas of the Fermi surfaces of these compounds are also calculated.

*Key words:*  $\text{YNi}_2$ ,  $\text{YFe}_2$ , Fermi surface, dHvA frequency

---

Recently, magnetic properties of intermetallic compounds of rare-earth (R) and 3d transition elements,  $\text{RM}_2$  ( $\text{M}=\text{Mn, Fe, Co and Ni}$ ), have been studied intensively. Among them, yttrium compounds  $\text{YM}_2$  with the cubic Laves phase ( $\text{MgCu}_2$ -type) structure are widely known as possessing interesting magnetic properties associated with 3d electrons in M atoms [1]. Many theoretical and experimental studies on the magnetic properties have already been carried out for antiferromagnetic  $\text{YMn}_2$ , ferromagnetic  $\text{YFe}_2$ , paramagnetic  $\text{YCo}_2$  and  $\text{YNi}_2$ . However, direct studies on the Fermi surface itself, e.g., dHvA frequency, have not been done so far, except for theoretical calculations for  $\text{YCo}_2$  [2]. In this paper, the angular dependences of the extremal cross-sectional area (ECSA) of the Fermi surfaces of the non-magnetic  $\text{YFe}_2$  and  $\text{YNi}_2$  are calculated. The calculations for non-magnetic  $\text{YMn}_2$  are published elsewhere [3].

The band structure calculations for the non-magnetic  $\text{YFe}_2$  and  $\text{YNi}_2$  are carried out by using a self-consistent FLAPW method. The local density approximation in the Gunnarsson and Lundqvist formula [4] is adopted to construct the exchange-correlation terms for the oneelectron potential. The spin-orbit interaction is not included. Observed lattice constants are used in the present calculations.

---

<sup>1</sup> Corresponding author, E-mail: nakada@landau.shinshu.ac.jp

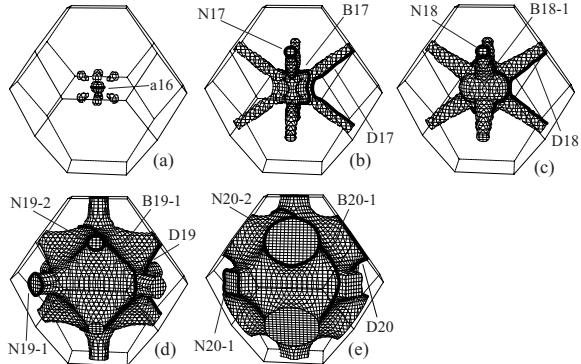



Fig. 1. Hole surfaces of non-magnetic  $\text{YFe}_2$ . (a)~(e) are those of 16th~20th bands, respectively.

For constructing basis function, we used the criteria  $l_{\max} = 7$  inside the muffin-tin (MT) spheres and  $|k+G_i| \leq K_{\max} = 8.5 \times (2\pi/a)$  outside the MT spheres, where  $k$  is a wave vector in the first Brillouin zone,  $G_i$  the reciprocal lattice vector. The final potential is constructed self-consistently from eigenstates at 85 sampling  $k$ -points in the irreducible 1/48 Brillouin zone (IBZ). To obtain a final band structure, we selected 231 sampling  $k$ -points in the IBZ. The MT radii of Y and M(=Fe,Ni) are taken as 0.165 and 0.155 in a unit of lattice constant  $a$ . The convergence is achieved as that the difference between input and output potentials becomes smaller than  $10^{-7}$  Ryd.

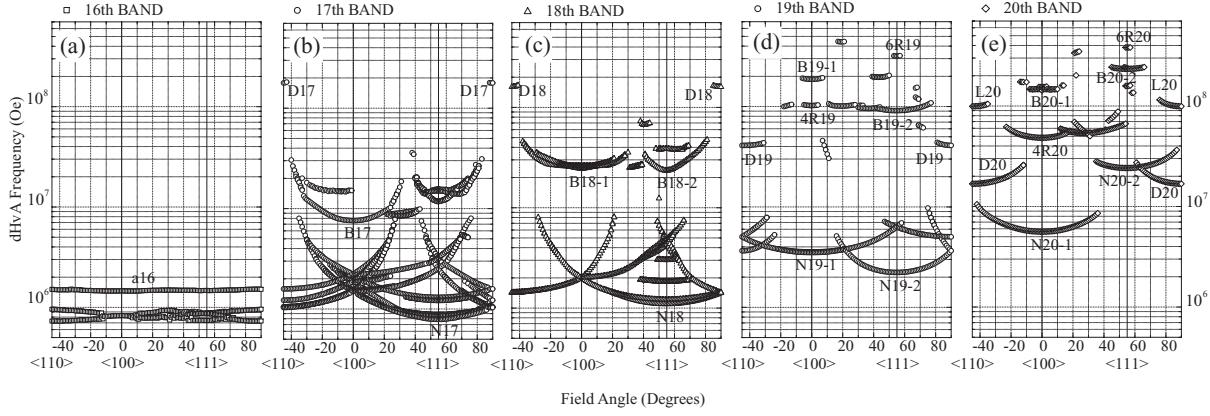



Fig. 3. Angular dependence of the calculated extremal cross-sectional areas, corresponding to experimental dHvA frequencies, of the Fermi surfaces in  $\text{YFe}_2$ . (a)~(e) are dHvA frequencies of 16th~20th bands, respectively.

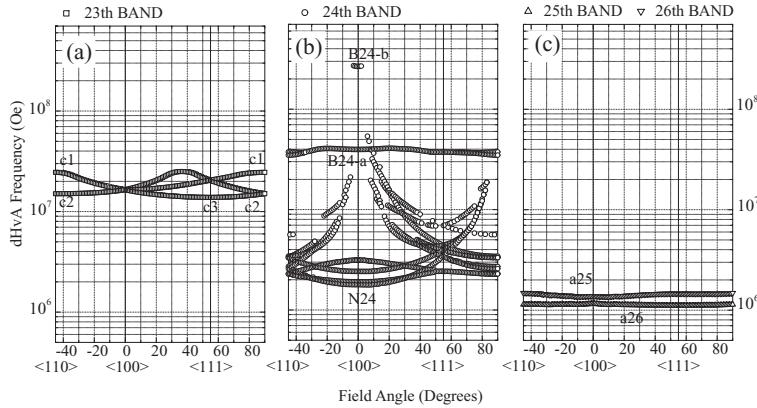



Fig. 4. Angular dependence of the calculated extremal cross-sectional areas, corresponding to experimental dHvA frequencies, of the Fermi surfaces in  $\text{YNi}_2$ . (a),(b) and (c) are dHvA frequencies of 24th,25th and 26th bands.

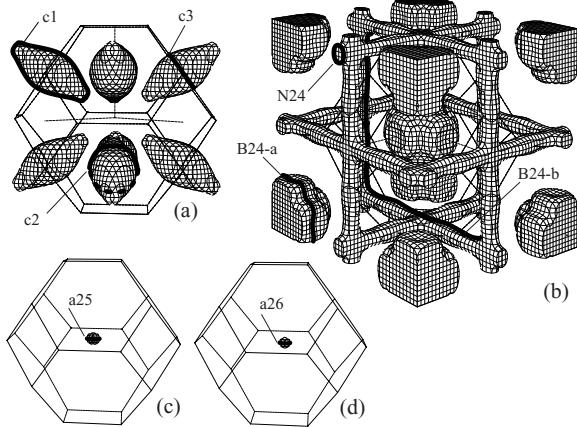



Fig. 2. Fermi surfaces of non-magnetic  $\text{YNi}_2$  (a):hole surface of 23th band. (b):electron surface of 24th band. (c):electron surface of 25th band. (d):electron surface of 26th band.

The electronic specific heat coefficient  $\gamma$  is estimated from the calculated density of states. The calculated values of  $\gamma$  are 25.0 and 3.67 mJ/mol·K<sup>2</sup> for the non-magnetic  $\text{YFe}_2$  and  $\text{YNi}_2$ . The observed  $\gamma$  for  $\text{YNi}_2$  [5]

is close to our calculated one.

The calculated results of the Fermi surfaces and ECSA for the non-magnetic  $\text{YFe}_2$  and  $\text{YNi}_2$  are shown in Figs. 1~4. The symbols shown on the curves of ECSA in Figs. 3 and 4 correspond to those for the Fermi surfaces in Figs. 1 and 2, respectively. Measurements of the dHvA frequency are desired to confirm the present calculations.

## References

- [1] N. H. Duk and T. Goto, *Handbook of the Physics and Chemistry of Rare Earths*, vol.26 ed. K. A. Gschneidner, Jr. and L. Eyring (Elsevier Science, 1999) p.177.
- [2] S. Tanaka and H. Harima, *J. Phys. Soc. Jpn.* **67** (1998) 2594.
- [3] K. Nakada, H. Shimizu, H. Yamada and H. Harima, unpublished work.
- [4] O. Gunnarsson, B. I. Lundqvist, *Phys. Rev. B* **13** (1976) 4274.
- [5] H. Mori, T. Satoh, H. Suzuki and T. Ohtsuka, *J. Phys. Soc. Jpn.* **51** (1982) 1785.