

Coherent-to-Incoherent Crossover in Optical Conductivity of Bad-Metallic $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$

Koshi Takenaka¹, Ryozo Shiozaki, Shunsuke Okuyama, Jiro Nohara, Shunji Sugai

Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

Abstract

The in-plane charge dynamics of $\text{La}_{1.92}\text{Sr}_{0.08}\text{CuO}_4$ are examined. The in-plane resistivity $\rho_{ab}(T)$ is metallic up to 1000 K without saturation at the Mott criterion, whereas the in-plane optical conductivity $\sigma_{ab}(\omega)$ shows a Drude peak only below a certain temperature $T^* \sim 300$ K. Above T^* the Drude peak shifts to finite energy. The relation between the shift of the Drude peak and the Mott Criterion indicates the “dynamical” localization of the carriers.

Key words: cuprate; bad metal; superconductivity; optical conductivity

In a wide range of strongly correlated metals, the dc resistivity can increase to far higher values than the Mott Criterion ρ_{Mott} corresponding to a mean free path l comparable to the Fermi wavelength $\lambda_F = 2\pi/k_F$ [1]. This contradicts the general assumption of ordinary metals, $l > \lambda_F$. Materials with this unusual characteristic are generically called *bad metals* [2], in contrast with ordinary metals showing resistivity saturation near ρ_{Mott} at high temperatures [3]. In order to get insight into the bad-metallic transport, we have studied the charge “dynamics” of a typical bad metal, lightly doped $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (LSCO, $x=0.06-0.10$), based on the optical spectra up to 500 K.

Single crystals of LSCO were grown by a traveling-solvent-floating-zone method. The in-plane resistivity $\rho_{ab}(T)$ was measured using a four-probe method. Near-normal incident in-plane ($\mathbf{E} \perp c$) reflectivity $R_{ab}(\omega)$ was measured using a Fourier-type interferometer (0.004–1.6 eV) and a grating spectrometer (0.8–6.6 eV). The in-plane optical conductivity $\sigma_{ab}(\omega)$ was deduced from $R_{ab}(\omega)$ via a Kramers-Kronig transformation. We made the extrapolation in the low energy using Hagen-Rubens reflectivity. We measured R_{ab} at each temperature T below 3.2 eV, and above 3.2 eV we

assumed the room- T data. $\rho_{ab}(T)$ for $x=0.06-0.10$ is metallic ($d\rho/dT > 0$) up to 1000 K without saturation at $\rho_{\text{Mott}}=1.5-1.7$ m Ω cm (Inset of Fig. 1). The details of the experiments were described elsewhere [4].

$\sigma_{ab}(\omega)$ for $x=0.08$ (Fig. 1) consists of two components, a broad mid-infrared (mid-IR) band (0.2–1 eV) and a lower-energy intraband mode (0–0.2 eV) associated with the conducting carriers [e.g., data at 500 K]. The mid-IR band is almost T -independent, whereas the intraband mode changes drastically with T . At low T , a Drude-like peak at $\omega=0$ is observed. However, it decays more slowly ($\propto \omega^{-1}$) than a simple-Drude response ($\propto \omega^{-2}$). This quasi-Drude response is observed only below a certain temperature T^* , which is about room temperature for $x=0.08$. Above T^* , the peak shifts to finite energy and σ_{ab} even *increases* as a function of ω in the far-IR limit. It is not clear whether the qualitative form of $\sigma_{ab}(\omega)$ actually changes or the peak shifts to frequencies below the observed range. However, σ_{dc} estimated from ρ_{ab} is higher (lower) than σ_{ab} at the lowest energy 4 meV below 150 K (above 295 K), which may support the former case. If the finite-energy (FE) peak appeared below 4 meV below 150 K, the shape of $\sigma_{ab}(\omega)$ became distorted unnaturally.

As doping proceeds, the intraband mode grows and the center of the mid-IR band shifts to lower energies (Fig. 2). For $x=0.10$, the two-component structure is

¹ Corresponding author. E-mail: k46291a@nucc.cc.nagoya-u.ac.jp

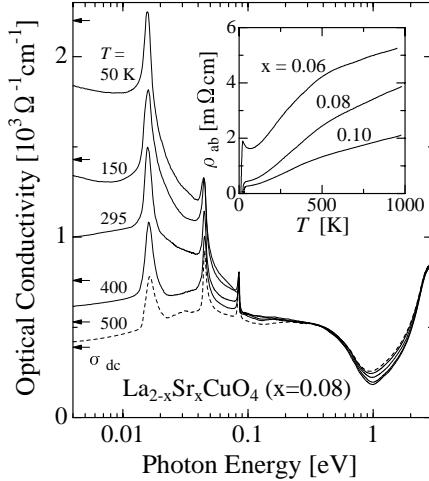


Fig. 1. In-plane optical conductivity of $\text{La}_{1.92}\text{Sr}_{0.08}\text{CuO}_4$. Dashed line represents spectrum at 500 K. Arrows represent dc conductivity estimated from ρ_{ab} . Inset shows in-plane resistivity $\rho_{ab}(T)$ of $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ ($x=0.06-0.10$).

no longer clear. The overall ω - and x -dependence of σ_{ab} at room T is consistent with previous data [5]. $\sigma_{ab}(\omega)$ is characterized by a FE peak at 295 K for $x=0.06$ and at 500 K for $x=0.10$. For all values of x , the Drude-like response seems to appear only below a certain temperature T^* , which increases as the doping proceeds.

The FE peak above T^* cannot be explained by a simple-Drude picture; the simple-Drude conductivity only asymptotically approaches the ω -independent (flat) function and still peaks at $\omega=0$, no matter how strong the scattering becomes. The peculiarity is exposed more clearly by an extended-Drude analysis. Below 150 K, the ω -dependent scattering rate γ^* (Inset of Fig. 2) monotonically increases with ω , which is typical of correlated metals such as highly doped cuprates [6]. In contrast, at 295 K γ^* turns upward at low ω . This non-monotonic behavior is unusual and seems to be beyond even the ω -dependent scattering description of the coherent motion. The tail of the broad mid-IR band cannot be the origin of the FE peak because the FE peak is higher than the mid-IR band and the two-component structure becomes obvious at high temperatures.

It is well-known that the FE peak is a characteristic of the hopping conduction. The shift of the Drude peak indicates the continuous change from low- T coherent (Drude) to high- T incoherent transport. One of the most important implications is a relation to the Mott criterion in σ_{dc} . For $x=0.08$, σ_{dc} at $T^* \sim 300$ K is close to $\sigma_{Mott} = \rho_{Mott}^{-1}$. For $x=0.06$ and 0.10, $\sigma_{ab}(\omega)$ appears to exhibit the quasi-Drude peak only when $\sigma_{dc} > \sigma_{Mott}$. The relation to σ_{Mott} suggests that the present FE peak is due to some scattering process. However, it is distinct from the Anderson localization because it appears at

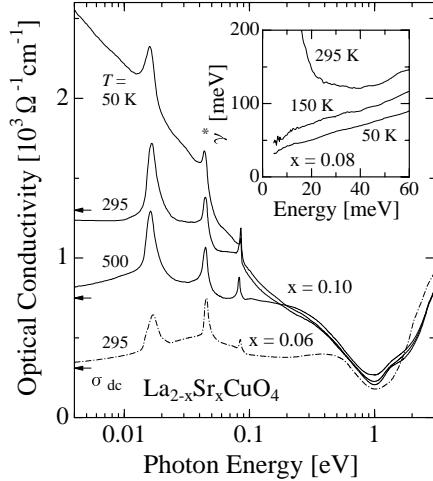


Fig. 2. In-plane optical conductivity of $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ ($x=0.06$ and 0.01). Arrows represent dc conductivity estimated from ρ_{ab} . Inset shows frequency-dependent (renormalized) scattering rate γ^* for $x=0.08$ ($\omega_p=11,000 \text{ cm}^{-1}$; $\varepsilon_\infty=2$).

high temperatures where inelastic scattering is strong. The FE peak is an indication of “dynamical” localization. The shift of the Drude peak is also observed for other bad metals, SrRuO_3 [7] and $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3$ [8].

Recently Ando *et al.* [9] reported that ρ_{ab} is metallic for all values of x at moderate temperatures and μ at 300 K changes only by a factor of 3 between $x=0.01$ and 0.17. Based on their results, the authors claim that the charge transport is governed by essentially the same mechanism in the range $x=0.01$ to 0.17, suggesting the relation to formation of the charged stripes. The relation between the formation of the stripes and the shift of the Drude peak is an interesting future issue.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by CREST of JST, and by the DAIKO Foundation.

References

- [1] J. Merino, R. H. McKenzie, Phys. Rev. B**61** (2000) 7996.
- [2] V. J. Emery, S. A. Kivelson, Phys. Rev. Lett. **74** (1995) 3253.
- [3] N. F. Mott, *Metal-Insulator Transitions*, 2nd ed. (Taylor & Francis, London, 1990).
- [4] K. Takenaka *et al.*, Phys. Rev. B**65** (2002) 092405.
- [5] S. Uchida *et al.*, Phys. Rev. B**43** (1991) 7942.
- [6] T. Timusk, B. Statt, Rep. Prog. Phys. **62** (1999) 61.
- [7] P. Kostic *et al.*, Phys. Rev. Lett. **81** (1998) 2498.
- [8] K. Takenaka *et al.*, Phys. Rev. B**60** (1999) 13011; *ibid* **62** (2000) 13864; *ibid* **65** (2002) 184436.
- [9] Y. Ando *et al.*, Phys. Rev. Lett. **87** (2001) 017001.