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Abstract

In theoretical investigations of the H-T phase diagrams of type-II superconductors, one usually assumes that the
influence of flux-line pinning on the melting line, and of the entropy term in the free energy on the order–disorder
transition, may be disregarded. We analyze when this approximation is justified for high-Tc superconductors with
various types of pinning.
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In three-dimensional high-Tc superconductors with
pinning, two phase transition lines are known to exist
in the magnetic field H - temperature T plane: The
line where a quasiordered Bragg glass thermally melts
into a flux-line liquid, and the order–disorder transi-
tion line separating the Bragg glass from an amorphous
vortex state [1–4]. The melting is caused by thermal
vibrations of the lattice, while the order–disorder tran-
sition is induced by quenched disorder in the vortex
system. These two lines merge at some point in the H-
T plane. Although both transitions are accompanied
by a proliferation of dislocations in the vortex lattice,
it was argued [5] that the dislocation density ρ is essen-
tially different in these cases: ρ ∼ a−2 for melting, and
ρ ∼ R−2

a for the order–disorder transition. Here a is
the spacing between flux lines, and Ra is the so-called
positional correlation length [6] within which the rela-
tive vortex displacements caused by the quenched dis-
order are of the order of a. In fact, an intersection of
these two different phase transition lines occurs in this
scenario, and the order–disorder line terminates at the
intersection point while the melting line continues for
some distance to higher H. Recent experiments [7,8]
for YBaCuO seem to support this scenario.

Phase diagrams of superconductors with pinning re-
flect the competition of three characteristic energies

[3]: the elastic energy, the pinning energy, and the en-
ergy of thermal fluctuations. At melting, the cost in
the elastic energy due to the proliferation of disloca-
tions is mainly balanced by the entropy gain associated
with thermal fluctuations, while the role of the pinning
energy, as can be shown, is determined by the param-
eter a/Rc. Here Rc is the transverse collective pinning
length [6]. On the other hand, at the order–disorder
transition, the balance of pinning energy and elastic en-
ergy is most important, while the relative contribution
of the entropy gain is negligible at low temperatures
and, according to the scenario of Ref. 5, is determined
by the ratio a/Ra near the intersection point. Thus, if
the intersection of the melting and the order–disorder
lines occurs sufficiently deep in the bundle pinning re-
gion (so that Rc � a at this point), the scenario of
Ref. 5 leads to the conclusion that one can find the
melting line by neglecting the pinning, and the order–
disorder line by neglecting the entropy gain. Just this
approximation was used in our paper [4] (and, in fact,
in Refs. 1-3) for analyzing the phase diagrams of su-
perconductors. In this paper we investigate the condi-
tions under which this approximation is really valid. In
our analysis based on Ref.4, we determine the bound-
aries of different pinning regimes self-consistently, find
the order–disorder line not only in the single vortex
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pinning regime (as did Refs. 1-3) but also in the bun-
dle pinning regime, and calculate the intersection point
Hdis(Ti) = Hm(Ti).

We find the order–disorder line Hdis(T ) and the
melting line Hm(T ) using the following two Linde-
mann criteria [4]: u2

T = c2
Lma2 for the melting, and

u(a, 0)2 = c2
La2 for the order–disorder transition. Here

uT is the magnitude of the thermal fluctuations of vor-
tices, and u(a, 0) is the mean relative displacement of
neighboring flux lines caused by the quenched disor-
der. For simplicity, the Lindemann constants cL and
cLm below are assumed to be equal, cLm = cL. If the
displacement u(a, 0) is found by using results of the
collective pinning theory [6], the phase diagrams of 3D
superconductors are determined by only two parame-
ters [4]: the Ginzburg number Gi, and a parameter de-
scribing the strength of the quenched disorder in the
flux-line lattice, D = εξ(0)/Lc(0). Here ξ is the coher-
ence length, Lc the Larkin pinning length in the sin-
gle vortex pinning regime, both taken at T = 0, and ε
is the anisotropy. The intersection point Ti of Hdis(T )
and Hm(T ) is mainly determined by the combination
ν = (2π)3/2D3/Gi1/2 [4].

We begin our analysis with the case of δTc pinning
[6] where ξ(T )/Lc(T ) ∝ g0(t) = (1−t2)−1/6, t = T/Tc.
When the parameter ν is of the order or less than unity,
and hence the intersection point Ti is essentially below
Tc, the ratio Rc/a calculated along the melting line is
sufficiently large in the interval Ti < T < Tc, and only
near Ti it decreases to several units. As to Ra/a near
Ti, it is larger than Rc/a since one always has Ra > Rc.
Thus, the above approximation is well justified, and
only very close to the intersection point corrections can
appear. The situation in the case ν > 1 (ν ≈ 4) is
shown in Fig. 1. It is seen that although the melting
line lies in the bundle pinning region, Rc is large only
near Tc, thus in a wide range of temperatures pinning
may affect the melting line. This decrease of Rc/a is
related to the fact that at large ν (ν > 8 in the case
cLm = cL = 0.25) the melting line enters the lower
single vortex pinning region near Tc.

In the case of the so-called δl pinning [6] where
g0(t) = (1 − t2)1/2, the situation is similar to that of
δTc pinning with a small ν: At the intersection point
Ti, the ratio Rc/a again is of the order of several units,
but it sharply increases along the melting line with
increasing T , Fig. 2. This fact is also evident from
the position of the boundary Hlb(T ) separating the
regions of small and large bundle pinning (where Rc

equals the London penetration depth λ [6]). Thus a
correction to the melting line is expected only near Ti.
Interestingly, for both types of pinning, Rc/a at Ti is
of the same order and only weakly depends on Gi and
D. This probably means that at Ti the pinning energy
always has reached some fraction of the elastic energy.
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Fig. 1. The order–disorder line Hdis(t) for the case of δTc pin-

ning, the melting line Hm(t), the boundary of the single vortex

pinning regime Hsv(t), the boundary between the small and

the large bundle pinning regimes Hlb(t) (for κ = λ/ξ = 100),

and the mean-field upper critical field Hc2 = Hc2(0)(1 − t2).

The dependence of Rc/a along the melting line is also shown.
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Fig. 2. As Fig. 1 but for the case of δl pinning.
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