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Abstract

A fluid layer subject to a vertical temperature gradient will start convecting when the temperature difference across
the layer exceeds a critical value. A linear stability analysis is performed to calculate this critical value for a dilute
3He–superfluid 4He mixture rotating about a vertical axis. Significant differences from the result for a classical
fluid are shown which arise from the presence of vortex mutual friction in the equations of motion. Unlike the
non-rotating case these differences should be experimentally observable.
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1. Introduction

The addition of 3He to liquid 4He allows for a fi-
nite thermal conductivity in the superfluid phase and
hence a temperature gradient can be supported. Con-
sequently convective instability is possible in the mix-
ture. The theory of onset of convection in these mix-
tures was effectively set up by Parshin [1]; more re-
fined calculations of the onset of convection were car-
ried out by Steinberg [2] and Fetter [3]. While these
authors disagree on the issue of time-dependence, the
two approaches yield identical answers with regard to
stationary convection.

One of the interesting features of convection in su-
perfluid mixtures is that the conduction state is one of
dynamical equilibrium. Fetter showed that the effects
brought about by the destabilization of the non-zero
normal velocity are small and produce perturbative
corrections to the Rayleigh number. When the pertur-
bative effects are ignored, Fetter’s analysis reduces to
that of Parshin’s. We want to investigate if rotation
about a vertical axis substantially modifies the critical
Rayleigh number for the onset of convection. For sim-
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plicity we will use Parshin’s equations of motion aug-
mented with the Coriolis and vortex mutual friction
forces [4].

2. Analysis

We consider a 3He-4He mixture contained between
two horizontal thermally conducting boundaries of in-
finite extent and rotating about a vertical axis. We
apply a temperature gradient across the fluid with
the higher temperature on the top. This is in the op-
posite direction to that usually required to initiate
convection — this is due to the 3He heat flush [5].
Ignoring time dependencies, the equations governing
the superfluid mixture dynamics (linearised and non-
dimensionalised) are

∇4j = ∇4q + R∇2
hθ + 2Ω

∂ζ

∂z
, (1)

∇2ζ = ∇2ζs − 2Ω
∂j

∂z
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∇2θ = j − q, (3)
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Here j, q, ζ and ζs are perturbations from the con-
duction state values of the z-components of j = ρnvn +
ρsvs, q = ρvs,∇×j and ∇×q respectively. θ is the tem-
perature profile perturbation, R is the Rayleigh num-
ber, Ω is the angular velocity of rotation and B and B′

are the mutual friction coefficients. ρn (ρs) and vn (vs)
are the normal (superfluid) density and velocity. ∇2

h is
the horizontal Laplacian.

We can eliminate θ, q, ζ and ζs from equations (1)
– (5) to obtain an expression for j. This variable has
especially simple boundary conditions, namely j = 0
at the top and bottom boundaries. We find that
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where B1 = B2 +(2−B′)2, B2 = B2 − (2−B′)B′ and
B3 = B2 + B′2.

For the unbounded slab of fluid the solution to equa-
tion (6) is in the form of periodic structures in the hor-
izontal x-y plane. The solution for j therefore has the
form (for idealised stress-free boundaries)

j = sin(πz) exp[i(kxx + kyy)]. (7)

Substituting and rearranging we arrive at an expres-
sion for the Rayleigh number as a function of wavenum-
ber

R =
(π2 + k2)3

k2
+

4π2Ω2

k2
Φ (8)

where
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ρ
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(9)

and k2 = k2
x + k2

y. Minimizing equation (9) with re-
spect to k for given B, B′, ρs

ρ and Ω gives us the criti-
cal Rayleigh number and wavenumber for the onset of
time-independent convection.

If the mutual friction terms are absent (B = B′ =
0), then Φ = 1 and equation (8) reduces to the form for
a classical fluid. If we now include the mutual friction
terms, we find significant deviation from the classical
pure fluid result. For large Ω, we can easily see that
kc(Ω) ∼ Ω1/6 which leads to Rc(Ω)−Rc(0) ∼ Ω. These
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Fig. 1. Critical Rayleigh number as a function of Ω

exponents differ from the results for a pure fluid where
they are 1

3
and 4

3
respectively [6].

Figure 1 shows the variation with angular velocity
of the critical Rayleigh number for a pure fluid and a
superfluid mixture at two temperatures. The values of
B and B′ for a superfluid mixture are not known but
if we consider a dilute mixture near the λ-line but well
above the phase-separated region we can expect that
they will not differ too much from those of pure 4He.
We used ρs

ρ
= 0.09, B = 2.42, B′ = −0.68 at 2.16 K

and ρs
ρ

= 0.16, B = 1.79, B′ = −0.30 at 2.14 K [7].

3. Conclusion

The departure from the standard value of R caused
by B and B′ has to be compared with the departure
caused by the neglected two-fluid terms. Fetter esti-
mates that the latter are too small to detect experimen-
tally. The correction due to the mutual friction can be
significant and we expect that it would be observable
experimentally. However, at and above a finite value of
Ω, the preferred onset state for convection is not sta-
tionary but oscillatory. Work is in progress to extend
the above analysis to account for this time-dependence.
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