

An anomalous dip in thermoelectric power of $\text{Nd}_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$

S. R. Ghorbani ^{a,1}, Ö. Rapp ^a

^a*Solid State Physics, Department of Microelectronics and Information Technology, KTH Electrum 229, SE-164 40 Kista, Sweden*

Abstract

The thermoelectric power, S , has been studied for sintered samples of $\text{Nd}_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$ with $0 \leq x \leq 0.30$ in the temperature range from the superconducting T_c to room temperature. S increases with decreasing temperature, and has a broad maximum at T^{max} in the region around 120 K before decreasing strongly when T_c is approached. Several properties indicate a decrease of charge concentration with decreasing doping, x , from $S(x, 290K)$, T^{max} , and the resistivity $\rho(x, 290K)$. An anomaly has been observed in $S(T)$ for $x \geq 0.20$ in the form of a dip at 78 K of order 15% of S . The origin of this feature is not known.

Key words: Superconductivity ;Thermoelectric power ;Pr doping ;

1. Introduction

In the RE-123 (RE=rare earth element) superconductors the RE's can be exchanged for each other with only small effect on the critical temperature T_c with the exception of Pr substitution which decreases T_c dramatically. Different explanations [1-4] for the depression of T_c have been suggested. Varying results for the valence of Pr is one reason. Recent neutron diffraction results in Nd(Pr)-123 [5] and analysis of T_c in Y(Pr)-123 [6] have suggested that hole localisation in the Pr⁴⁺ site is the main reason for the suppression of superconductivity by Pr. The observation of superconductivity in single crystals of $\text{PrBa}_2\text{Cu}_3\text{O}_{7-\delta}$ [7,8] further complicates the understanding of the role played by Pr in the suppression of T_c . In our previous work [5], resistivity measurements in $\text{Nd}_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_7$ showed a decreasing metallic behaviour with increased resistivity and decreased slope of the normal state resistivity vs. temperature with increasing x . Neutron diffraction data indicated that the Cu1-O4 and Cu2-O4 distances and the oxygen content were independent of Pr doping in Nd(Pr)-123. Bond Valence Sum (BVS) calculations showed a constant Cu2 valence but a decrease of the

total hole concentration in the CuO₂ plane. To further investigate the effect of Pr in $\text{Nd}_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$ system, we have measured the thermoelectric power $S(x, T)$.

2. Sample characterisation and experimental

Samples of $\text{Nd}_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$ (with $x = 0, 0.05, 0.10, 0.15, 0.20$, and 0.30) were prepared by standard solid-state methods. Starting materials were high purity Nd_2O_3 , BaCO_3 , CuO , and Pr_6O_{11} . The samples were pressed into pellets and calcinated in air at 900, 920, and 920 °C with intermediate grindings. They were then annealed in flowing oxygen at 460 °C for 3 days and the temperature was finally decreased to room temperature at a rate of 12 °C/hr.

The samples were characterised by X-ray powder diffraction (XRD). The XRD patterns were recorded in a Guinier-Hägg focusing camera using CuK α radiation with Si as an internal standard [9]. The XRD results for Pr-doped Nd-123 samples displayed single-phase behaviour. All XRD patterns were indexed with an orthorhombic unit cell.

The electrical resistivity was measured with a standard dc four-probe method. Electrical leads were at-

¹ Corresponding author. E-mail address:ghorbani@ftf.kth.se

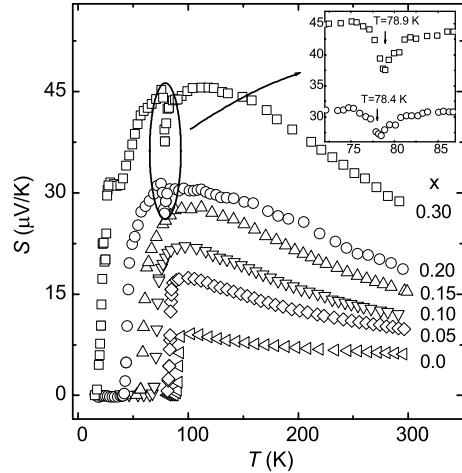


Fig. 1. Thermoelectric power S as a function of temperature and Pr doping for $\text{Nd}_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$. Inset: $S(T)$ in the temperature range 72-87 K, where an anomaly has been observed in the form a dip, for $x=0.20$ and 0.30 .

tached to the sample by silver paint and heat treated at 300 °C in flowing oxygen for half an hour, which gave contact resistances of order 1-2 Ω . Thermoelectric power measurements were made on sintered bars of typical dimensions $0.5 \times 2.5 \times 10 \text{ mm}^3$, using a small, reversible temperature difference of 1.5 K.

3. Results and discussion

Figure 1 shows the thermoelectric power S as a function of temperature and Pr concentration for $\text{Nd}_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$. S first increases with increasing temperature towards a broad maximum at T^{max} above the superconducting T_c , and then decreases up to room temperature. Both S and T^{max} increase with increasing x . As further illustrated in the inset of Fig. 1, a dip in $S(T)$ was observed at a temperature in the range 78-79 K. This feature only occurred for $x \geq 0.20$. These anomalies are reproducible. The origin of the anomaly is not known. Except for the dips, all studied properties of the samples with $x \geq 0.20$ (e.g. $S(290K)$, $\rho(290K)$, T_c , T^{max} , and BVS calculations) are in agreement with the trends expected from the results for $x < 0.20$.

The doping concentration dependence of the room temperature $S(290K)$ and resistivity $\rho(290K)$ are plotted in Fig. 2. Both $S(290K)$ and $\rho(290K)$ show a continuous increase with increasing Pr doping. The results for $S(290K)$, T^{max} , and $\rho(290K)$ suggest that Pr reduces hole concentration in the CuO_2 plane. This is well in agreement with BVS calculations from neutron diffraction data [5].

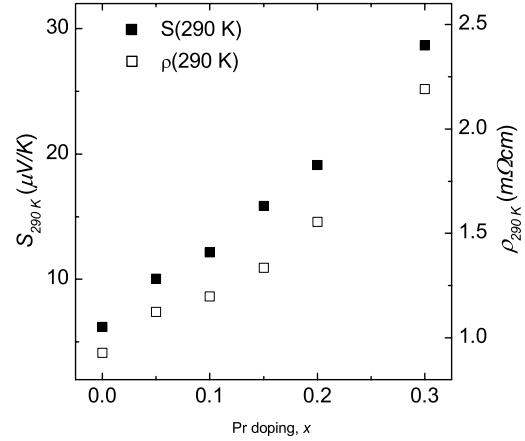


Fig. 2. $S(290K)$ (left scale) and $\rho(290K)$ (right scale) vs. Pr doping, x .

Acknowledgements

We would like to thank I. Bryntse and M. Valldor, Stockholm University, for help with sample preparation and X-ray analysis. Financial support from the Swedish Agencies Vetenskapsrådet and the SSF Oxide Consortium, and from the Iranian Ministry of Science, Research, and Technology are gratefully acknowledged.

References

- [1] Y. Dalichaouch, M. S. Torikachvili, E. A. Early, B. W. Lee, C. L. Seaman, K. N. Yang, H. Zhou, and M. B. Maple, Solid State Commun. **65**, (1988) 1001.
- [2] J. J. Neumeier, T. Bjørnholm, M. B. Maple, I. K. Schuller, Phys. Rev. Lett. **63** (1989) 2516.
- [3] A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, R. P. Guertin, Phys. Rev. B **40** (1989) 4453.
- [4] G. Y. Guo, W. M. Temmerman, Phys. Rev. B, **41** (1990) 6372; R. Fehrenbacher, T. M. Rice, Phys. Rev. Lett. **70** (1993) 3471; A. I. Liechtenstein, I. I. Mazin, Phys. Rev. Lett. **74**, (1995) 1000.
- [5] S. R. Ghorbani, M. Andersson, Ö. Rapp, submitted to Physical Review B.
- [6] Z. Tomkowicz, Physica C **320**, 173 (1999).
- [7] H. B. Blackstead, J. D. Dow, D. B. Chrisey, J. S. Horwitz, M. A. Black, P. J. McGinn, A. E. Klunzinger, D. B. Pulling, Phys. Rev. B **54**, (1996) 6122.
- [8] Z. Zou, J. Ye, K. Oka, Y. Nishihara, Phys. Rev. Lett. **80** (1998) 1074.
- [9] K. E. Johansson, P. E. Werner, J. Phys. E **13**, (1989) 1289.