

Electronic heat capacity of CuIr_2Se_4 at low temperature

Shoichi Nagata^{a,1}, Nobuhiro Matsumoto^a, Ryo Endoh^a, Nobuo Wada^b

^aDepartment of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585 Japan

^bDepartment of Physics, Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

Abstract

The normal thiospinel CuIr_2S_4 exhibits a temperature-induced metal-insulator ($M - I$) transition around 230 K with structural transformation. A charge-ordering and spin-dimerization transition in CuIr_2S_4 has been found recently. In contrast to CuIr_2S_4 , CuIr_2Se_4 remains metallic down to 0.4 K without the $M - I$ transition. The instability of the metallic state in CuIr_2Se_4 at high pressure has been previously reported. Heat capacity of CuIr_2Se_4 has been now measured over the temperature range of 0.5 to 11 K. The fit of the heat capacity data to $C = \gamma T + \beta T^3$ is very good with $\gamma = 6.68 \text{ mJ mol-f.u.}^{-1} \text{ K}^{-2}$ and $\beta = 4.09 \text{ mJ mol-f.u.}^{-1} \text{ K}^{-4}$, where γT is the electronic heat capacity.

Key words: CuIr_2Se_4 ; electronic heat capacity; Debye temperature; metal-insulator transition

1. Introduction

Temperature-induced metal-insulator ($M - I$) transition occurs in a thiospinel CuIr_2S_4 around 230 K with structural transformation [1–9]. Simultaneously CuIr_2S_4 undergoes a charge-ordering and spin-dimerization transition [10]. With decreasing temperature, the magnetic state changes from the Pauli paramagnetism in high temperature metallic state to diamagnetism due to the atomic core orbital in the insulating state.

On the other hand, CuIr_2Se_4 remains metallic down to 0.4 K without the $M - I$ transition [2]. The pressure induced $M - I$ transition and the instability of the metallic state in CuIr_2Se_4 at high pressure have been investigated [11,12]. No trace of the structural transformation was observed up to 5 GPa. Heat capacity of CuIr_2Se_4 at ambient pressure has been measured over the temperature range of 0.5 to 11 K. Measurement of the heat capacity will provide insight into the nature of metallic state and the driving force behind the $M - I$

transition of CuIr_2S_4 . Data of the electronic and lattice contributions to the heat capacity of CuIr_2Se_4 can be written as $C = \gamma T + \beta T^3$.

2. Experimental methods

The polycrystalline specimens were prepared by a direct solid-state reaction. Mixtures of high-purity fine powders of Cu (purity 99.99 %), Ir (99.99 %), Se (99.999 %) with an excess 0.1 wt% Se were heated in sealed quartz tubes to 1123 K and kept at this temperature for 10 days. The resultant powder specimens were reground and pressed to rectangular bars and then were heated to 1123 K for 2 days. The heat capacity measurement was made using a standard heat-pulse technique in the ^3He cryostat down to 0.5 K.

3. Results and discussion

Powder x-ray diffraction pattern at room temperature confirms that CuIr_2Se_4 has the normal-spinel type

¹ Corresponding author. E-mail: naga-sho@mmm.muroran-it.ac.jp

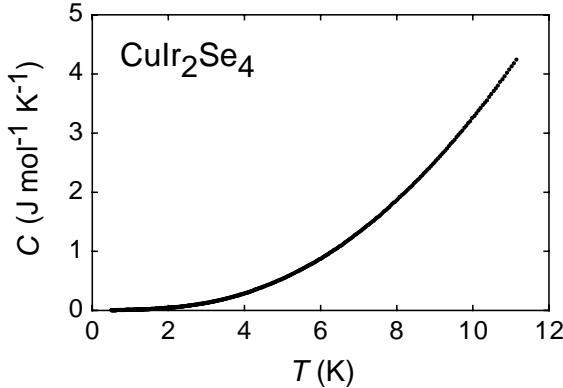


Fig. 1. Molar heat capacity of CuIr_2Se_4 over the temperature range of 0.5 to 11 K.

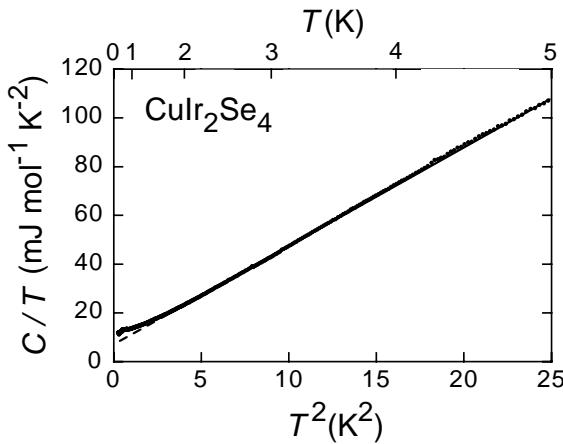


Fig. 2. Heat capacity for CuIr_2Se_4 , plotted as C/T versus T^2 . The broken line represents the heat capacity as calculated from $C/T = \gamma + \beta T^2$.

structure. The values of lattice constant a and u parameter are $a = 10.324 \text{ \AA}$ and $u = 0.385$ for CuIr_2Se_4 at room temperature.

The temperature dependence of the molar heat capacity of CuIr_2Se_4 is shown in Fig. 1. Fig. 2 shows the molar heat capacity plotted as C/T vs T^2 . No transition was observed in the heat capacity and the magnetic property down to 0.5 K for CuIr_2Se_4 . The fit of the heat capacity data to $C = \gamma T + \beta T^3$ is very good with $\gamma = 6.68 \text{ mJ mol-f.u.}^{-1} \text{ K}^{-2}$ and $\beta = 4.09 \text{ mJ mol-f.u.}^{-1} \text{ K}^{-4}$, where γT is the electronic heat capacity. The magnitude of γ is low, which indicates not to be heavy electrons. The small electronic contribution to the heat capacity suggests the less importance of electron-electron interactions. This result supports indirectly that the driving force of the $M - I$ transition in CuIr_2S_4 originates mainly from electron-phonon interactions. Below 1.0 K, there is small excess heat capacity over the calculated value from $\gamma T + \beta T^3$, which may arise from other origins. The heat capacity extrap-

olated over the entire temperature range is also shown as the broken line in Fig. 2 which is the result of a least-squares fitting of the data.

The Sommerfeld parameter for the electronic heat capacity, γ , is given as $\gamma = (1/3)\pi^2 k_B^2 D(\varepsilon_F)$, where $D(\varepsilon_F)$ is the band-structure density of state at Fermi level (for both spin direction). The value of $D(\varepsilon_F)$ is found to be $0.405 \text{ states eV}^{-1} \text{ atom}^{-1}$ for CuIr_2Se_4 . The value of β for the Debye T^3 approximation for phonon is expressed as $\beta = (12/5)\pi^4 r N_A k_B \Theta^{-3}$, here the number of atoms per formula-unit, r , is 7 for CuIr_2Se_4 . The Debye temperature Θ is obtained to be 149 K for the value of $r = 7$.

Acknowledgements

The authors would like to thank Mr. J. Kiuchi (University of Tokyo) for his help of experiments. The present research was supported financially by the Iwatani Naoji Foundation's Research Grant.

References

- [1] S. Nagata, T. Hagino, Y. Seki, T. Bitoh, *Physica B* **194-196** (1994) 1077.
- [2] T. Hagino, Y. Seki, S. Nagata, *Physica C* **235-240** (1994) 1303.
- [3] T. Furubayashi, T. Matsumoto, T. Hagino, S. Nagata, *J. Phys. Soc. Jpn* **63** (1994) 3333.
- [4] T. Hagino, T. Tojo, T. Atake, S. Nagata, *Philos. Mag. B* **71** (1995) 881.
- [5] S. Nagata, N. Matsumoto, Y. Kato, T. Furubayashi, T. Matsumoto, J. P. Sanchez, P. Vulliet, *Phys. Rev. B* **58** (1998) 6844.
- [6] R. Endoh, N. Matsumoto, S. Chikazawa, S. Nagata, T. Furubayashi, T. Matsumoto, *Phys. Rev. B* **64** (2001) 075106-1 and references therein.
- [7] K. Kumagai, S. Tsuji, T. Hagino, S. Nagata, in *Spectroscopy of Mott Insulators and Correlated Metals*, Springer Series in Solid-State Sciences, Vol. 119, edited by A. Fujimori, Y. Tokura (Springer-Verlag, Berlin, 1995), p. 255.
- [8] A. T. Burkov, T. Nakama, K. Shintani, K. Yagasaki, N. Matsumoto, S. Nagata, *Phys. Rev. B* **61** (2000) 10049.
- [9] J. Matsuno, T. Mizokawa, A. Fujimori, D. A. Zatsepin, V. R. Galakhov, E. Z. Kurmaev, Y. Kato, S. Nagata, *Phys. Rev. B* **55** (1997) R15979.
- [10] P. G. Radaelli *et al.*, *Nature* **416** (2002) 155.
- [11] J. Tang, T. Matsumoto, T. Naka, T. Furubayashi, S. Nagata, N. Matsumoto, *Physica B* **259-261** (1999) 857.
- [12] T. Furubayashi, T. Kosaka, J. Tang, T. Matsumoto, Y. Kato, S. Nagata, *J. Phys. Soc. Jpn* **66** (1997) 1563.