Specific heat of S =1 quasi-1D antiferromagnet NDMAP in
magnetic fields
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Abstract

NDMAP, Ni(C5H14N2)2N3(PFs), is a quasi-one-dimensional S = 1 Heisenberg antiferromagnet with Haldane-gap
energies of 22 K and 5.5 K for excitations polarized parallel and perpendicular to the chain c axis, respectively. We
have extended the specific-heat measurements by Honda et al. in this compound to 150 mK in temperature and 18
T in magnetic field, employing a novel relaxation calorimeter. The experiment provides an accurate determination
of the exponent for the transition line for the field-assisted ordered phase. In addition, a new feature has been found

in the phase diagram at around 14 T.
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The ground state of one-dimensional integer-
spin Heisenberg antiferromagnets is a spin singlet
with only short-range correlations and is often re-
ferred to as a quantum spin liquid. As has been
predicted by Haldane [1], there is an energy gap be-
tween the ground state and the first excited triplet.
This prohibits three-dimensional ordering in one-
dimensional antiferomagnets with a weak inter-chain
coupling. However, a magnetic field destroys the gap
and allows phase transition to an antiferromagnet-
ically ordered state to appear. Such 3D ordering
has been observed in spin-1 antiferromagnetic chain
materials Ni(C5H14N2)2N3(PF6) (NDMAP) [2,3]
and Ni(C5H14N2)2N3(CIO4) (NDMAZ) [4,5}

NDMAP has an orthorhombic structure with the
lattice parameters a = 18.046 A, b = 8.7050 A, and
¢ = 6.139 A. The antiferromagnetic spin chains run
along the c axis. The structure of NDMAZ is similar,
with somewhat different lattice parameters. The in-
chain exchange constant J, the anisotropy constant
D, and the Haldane gap energies of NDMAP have
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been determined from the magnetic susceptibility by
Honda et al. [2]. The magnetic phase diagram has
been determined by specific heat measurements up to
12 T [2]. Depending on the direction of the applied
field, the field-assisted ordered phase has either three-
dimensional long range order or quasi-two-dimensional
short range order [6].

To extend the specific-heat measurements to 18 T
and to mK temperatures, we have grown fully deuter-
ated single crystals of NDMAP to reduce the nuclear
heat capacity of protons. Neutron scattering and mag-
netic susceptibility measurements [2,3,7] indicate that
there is no difference between hydrogenated samples
and deuterated samples in their magnetic properties.

The magnetic-field dependence of the specific heat
at constant temperatures in the field applied along the
c axis is shown in Fig. 1. The peaks in the specific heat
clearly show phase transition. The phase boundary ob-
tained from these data, as well as from data taken as a
function of temperature at constant magnetic fields, is
given in Fig. 2. There is a small difference between the
present phase diagram and the earlier one [2], which
is shown with open symbols. This difference probably
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Fig. 1. Magnetic field dependence of the specific heat of
NDMAP measured at constant temperatures. The external
magnetic field is applied along the ¢ axis. The lines are guides
to the eye.

arises from a small misalignment of the samples with
respect to the field, rather than an intrinsic difference
between a hydrogenated NDMAP and a deuterated
NDMAP.

An important feature of the new phase diagram is a
shallow local minimum in the transition temperature at
around 14 T, as can be seen in Fig. 2. We have searched
for a possible second phase boundary originating from
this minimum by making a field scan from 12 T to 15T
at 0.7 K, but no feature indicative of a phase boundary
has appeared in the specific heat. Since the derivative
of specific heat with respect to the magnetic field is

given by
2
(%) —7 (8_M> 7 )

OH Jr orz )
and the magnetization is exactly the same in two
phases separated by second-order transition, a per-
fectly horizontal second-order line produces no discon-
tinuity in (0CH /OH), at the transition. For this rea-
son, the present result does not rule out an existence
of a horizontal phase boundary at 14 T. Further study
using techniques other than specific heat is needed.

Recently, field-assisted magnetic ordering in the S =
1/2 spin-dimer material TICuCls has been interpreted
in terms of the Bose-Einstein condensation of magnons
[8]. According to the magnon Bose-Einstein condensa-
tion theory, the phase boundary in the temperature vs
field plot obeys a power law T o< (H — H¢)®. How-
ever, the exponent a of 0.50 measured in T1CuCls is
smaller than the theoretical value of 2/3. The exponent
for NDMAZ has been reported to be 0.45 [5], which is
also less than the theoretical value.

We find from our data that the exponent « for
NDMAP is 0.35 for magnetic fields oriented in the di-
rection of the c axis. This is substantially smaller than
a = 2/3 predicted by the theory and the experimental
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Fig. 2. Temperature vs magnetic field diagram of NDMAP for
the field applied parallel to the ¢ axis.

values for TICuCls and NDMAZ. The failure of the
theory is probably due to a limitation of the Hartree-
Fock approximation employed or some feature in real
systems that has been ignored by the theory.
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