

Specific heat of $S = 1$ quasi-1D antiferromagnet NDMAP in magnetic fields

H. Tsuji^{a,1}, Z. Honda^b, B. Andraka^a, K. Katsumata^c, Y. Takano^a

^a*Department of Physics, University of Florida, PO Box 118440, Gainesville, Florida 32611-8440, USA*

^b*Faculty of Engineering, Saitama University, Urawa, Saitama 338-8570, Japan*

^c*RIKEN Harima Institute, Mikazuki, Sayo, Hyogo 679-5148, Japan*

Abstract

NDMAP, $\text{Ni}(\text{C}_5\text{H}_{14}\text{N}_2)_2\text{N}_3(\text{PF}_6)$, is a quasi-one-dimensional $S = 1$ Heisenberg antiferromagnet with Haldane-gap energies of 22 K and 5.5 K for excitations polarized parallel and perpendicular to the chain c axis, respectively. We have extended the specific-heat measurements by Honda *et al.* in this compound to 150 mK in temperature and 18 T in magnetic field, employing a novel relaxation calorimeter. The experiment provides an accurate determination of the exponent for the transition line for the field-assisted ordered phase. In addition, a new feature has been found in the phase diagram at around 14 T.

Key words: Haldane gap; low-dimensional magnetism; magnetic ordering

The ground state of one-dimensional integer-spin Heisenberg antiferromagnets is a spin singlet with only short-range correlations and is often referred to as a quantum spin liquid. As has been predicted by Haldane [1], there is an energy gap between the ground state and the first excited triplet. This prohibits three-dimensional ordering in one-dimensional antiferromagnets with a weak inter-chain coupling. However, a magnetic field destroys the gap and allows phase transition to an antiferromagnetically ordered state to appear. Such 3D ordering has been observed in spin-1 antiferromagnetic chain materials $\text{Ni}(\text{C}_5\text{H}_{14}\text{N}_2)_2\text{N}_3(\text{PF}_6)$ (NDMAP) [2,3] and $\text{Ni}(\text{C}_5\text{H}_{14}\text{N}_2)_2\text{N}_3(\text{ClO}_4)$ (NDMAZ) [4,5].

NDMAP has an orthorhombic structure with the lattice parameters $a = 18.046 \text{ \AA}$, $b = 8.7050 \text{ \AA}$, and $c = 6.139 \text{ \AA}$. The antiferromagnetic spin chains run along the c axis. The structure of NDMAZ is similar, with somewhat different lattice parameters. The in-chain exchange constant J , the anisotropy constant D , and the Haldane gap energies of NDMAP have

been determined from the magnetic susceptibility by Honda *et al.* [2]. The magnetic phase diagram has been determined by specific heat measurements up to 12 T [2]. Depending on the direction of the applied field, the field-assisted ordered phase has either three-dimensional long range order or quasi-two-dimensional short range order [6].

To extend the specific-heat measurements to 18 T and to mK temperatures, we have grown fully deuterated single crystals of NDMAP to reduce the nuclear heat capacity of protons. Neutron scattering and magnetic susceptibility measurements [2,3,7] indicate that there is no difference between hydrogenated samples and deuterated samples in their magnetic properties.

The magnetic-field dependence of the specific heat at constant temperatures in the field applied along the c axis is shown in Fig. 1. The peaks in the specific heat clearly show phase transition. The phase boundary obtained from these data, as well as from data taken as a function of temperature at constant magnetic fields, is given in Fig. 2. There is a small difference between the present phase diagram and the earlier one [2], which is shown with open symbols. This difference probably

¹ Corresponding author. E-mail: tsuji@phys.ufl.edu

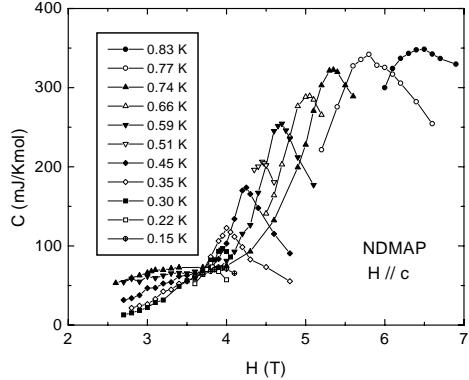


Fig. 1. Magnetic field dependence of the specific heat of NDMAP measured at constant temperatures. The external magnetic field is applied along the c axis. The lines are guides to the eye.

arises from a small misalignment of the samples with respect to the field, rather than an intrinsic difference between a hydrogenated NDMAP and a deuterated NDMAP.

An important feature of the new phase diagram is a shallow local minimum in the transition temperature at around 14 T, as can be seen in Fig. 2. We have searched for a possible second phase boundary originating from this minimum by making a field scan from 12 T to 15 T at 0.7 K, but no feature indicative of a phase boundary has appeared in the specific heat. Since the derivative of specific heat with respect to the magnetic field is given by

$$\left(\frac{\partial C_H}{\partial H}\right)_T = T \left(\frac{\partial^2 M}{\partial T^2}\right)_H, \quad (1)$$

and the magnetization is exactly the same in two phases separated by second-order transition, a perfectly horizontal second-order line produces no discontinuity in $(\partial C_H / \partial H)_T$ at the transition. For this reason, the present result does not rule out an existence of a horizontal phase boundary at 14 T. Further study using techniques other than specific heat is needed.

Recently, field-assisted magnetic ordering in the $S = 1/2$ spin-dimer material TiCuCl_3 has been interpreted in terms of the Bose-Einstein condensation of magnons [8]. According to the magnon Bose-Einstein condensation theory, the phase boundary in the temperature vs field plot obeys a power law $T_c \propto (H - H_c)^\alpha$. However, the exponent α of 0.50 measured in TiCuCl_3 is smaller than the theoretical value of 2/3. The exponent for NDMAZ has been reported to be 0.45 [5], which is also less than the theoretical value.

We find from our data that the exponent α for NDMAP is 0.35 for magnetic fields oriented in the direction of the c axis. This is substantially smaller than $\alpha = 2/3$ predicted by the theory and the experimental

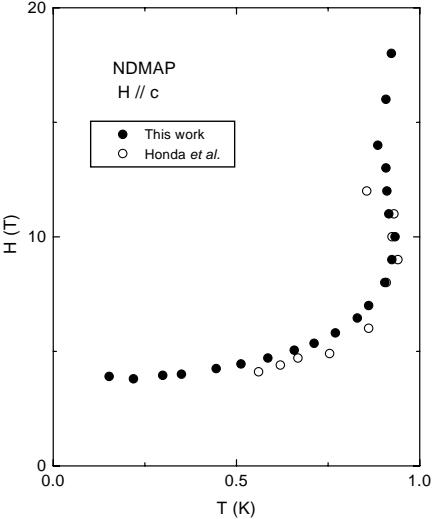


Fig. 2. Temperature vs magnetic field diagram of NDMAP for the field applied parallel to the c axis.

values for TiCuCl_3 and NDMAZ. The failure of the theory is probably due to a limitation of the Hartree-Fock approximation employed or some feature in real systems that has been ignored by the theory.

A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the NSF and the State of Florida. We thank E. C. Palm and T. P. Murphy for assistance. Experiments at Florida were supported by the NSF through DMR-9802050 and the DOE under Grant No. DE-FG02-99ER45748. Work at RIKEN was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

References

- [1] F. D. M. Haldane, Phys. Rev. Lett. **50** (1983) 1153.
- [2] Z. Honda, H. Asakawa, K. Katsumata, Phys. Rev. Lett. **81** (1998) 2566.
- [3] Z. Honda, K. Katsumata, Y. Nishiyama, I. Harada, Phys. Rev. B **63** (2001) 064420.
- [4] Z. Honda, K. Katsumata, H. Aruga Katori, K. Yamada, T. Ohishi, T. Manabe, M. Yamashita, J. Phys.: Condens. Matter **9** (1997) L83.
- [5] T. C. Kobayashi, H. Tatewaki, A. Koda, K. Amaya, Y. Narumi, K. Kindo, N. Aizawa, T. Ishii, M. Yamashita, J. Phys. Soc. Jpn. **70** (2001) 813.
- [6] Y. Chen, Z. Honda, A. Zheludev, C. Broholm, K. Katsumata, S. M. Shapiro, Phys. Rev. Lett. **86** (2001) 1618.
- [7] A. Zheludev, Y. Chen, C. L. Broholm, Z. Honda, K. Katsumata, Phys. Rev. B **63** (2001) 104410.
- [8] T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. **84** (2000) 5868.