Magnetic relaxation in superconductors with rotating flux lines
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Abstract

Magnetic relaxation of the critical state generated by a flux-line cutting process is theoretically investigated for a
superconducting plate. It is shown that study of the magnetic flux decay measured in two mutually perpendicular
directions in the plane of the plate allows one to extract the effective height of the activation barrier against flux-line

cutting from experimental data.
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Experimental data on magnetic relaxation in type-1I
superconductors enable one to estimate the so-called
effective depth of a flux-pinning well, Up, using the
expression [1] for the magnetic relaxation rate R =
d|M|/dnt:

T
R=——M 1
l70| |7 ( )

where M is the magnetic moment of the sample, T is
its temperature, and ¢ is the time. Strictly speaking,
for this formula to be valid, the current in any point
of the superconductor has to flow perpendicular to the
flux lines. For plates, strips, disks and cylinders this
property is caused by the symmetry of the problem.
However, in real samples of less symmetric shapes, ad-
jacent flux lines may be slightly rotated relative to each
other. This rotation generates a component of the cur-
rent along the magnetic induction B. In other words,
the current density j is no longer perpendicular to the
flux-lines. Such a rotation may exist even in samples
of sufficiently simple shape. For example, it occurs in
the partly penetrated critical states of flat isotropic su-
perconductors of elliptic or rectangular shape [2,3]. A
rotation can be also created in a plate in special exper-
iments [4].

The rotation of flux lines in superconductors can lead
to their mutual cutting [5,6]. Flux line cutting occurs
when the gradient of the angle defining the direction of
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B in the sample exceeds some critical value k. or, equiv-
alently, the component of current density parallel to
B, j), exceeds the longitudinal critical current density
Je|- In this situation a vortex [7] or a vortex array [8]
becomes unstable with respect to a helical distortion,
and the growth of this distortion leads to flux-line cut-
ting. As a result, a so-called general critical state [6,9]
is established in the superconductor when both j; and
the component of j normal to the magnetic induction,
ji, are equal to their critical values j. and jci, re-
spectively. The relaxzation of just this state is the main
subject of our paper. It turns out that apart from Up,
one more parameter U; is required for describing this
relaxation. This U; is the effective height of the bar-
rier which prevents flux-line cutting in superconduc-
tors. Knowledge of Uy and U; enables one to describe
the magnetic relaxation in samples of arbitrary shape
and with any magnetic prehistory. Our results for the
magnetic relaxation in a plate provide the possibility
to obtain U; from experiments.

We consider a geometry which is similar to that used
in the experiments of LeBlanc et al. [4]: A supercon-
ducting plate of thickness d is placed in an external ho-
mogeneous magnetic field H parallel to its plane; then
the field is rotated in the plane by an angle ¢ (or, equiv-
alently, the sample by an angle —() without changing
its magnitude, and eventually the direction and the
magnitude of the field are fixed and remain constant;
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this moment of time is taken as ¢ = 0. We investigate
the relaxation of the state generated by this process at
sufficiently large times ¢ > 0 when the current decay
becomes logarithmic. In particular, we calculate the
relaxation of the magnetic flux measured in two mutu-
ally perpendicular directions in the plane of the plate.
In this analysis we imply that the barriers Uy and U;
are sufficiently large, Uo /T > 1, U1 /T > 1, in order
to guarantee the existence of the logarithmic regime;
the angle ¢ exceeds u = k.d/2, the full rotation angle
of the induction B in the sample (in other words, the
fully penetrated critical state relative to the rotation
of B is implied to occur in the sample). We also as-
sume here that H considerably exceeds the variation of
B across the thickness of the plate, H > djc1 /2. The
latter assumption enables us to use the approximation
[9]: jer = const, k. = const (i.e. these quantities are
independent of B), which is an extension of the well-
known Bean critical state model, j.1 = const. In this
approximation, one has [9] jo; = k.H, and the above
assumption H > dj.1 /2 can be rewritten as x > u
where x = jo(H)/jeL.

We now present final formulas which enable one to
extract u (i.e., k.) and U from experimental data un-
der the condition x > u. The general case when this
condition is not fulfilled as well as details of the consid-
eration will be given elsewhere [10]. We consider here
the fluxes per unit length of the plate (the length is
measured in the direction perpendicular to the flux).
The flux along the final direction of the external field
defined by the angle ¢, @), and the flux perpendicular
to this direction, ® |, are given by

Rl ~ SIDE (2)
Deq 12 ’
D ~ 1—cospu 3)
Deq K '

where ®cq = poHd is the flux in the equilibrium state
of the superconductor. Interestingly, the fluxes @, ®
are mainly determined by u, while the parameter x
enters only corrections to these formulas. This enables
one not only to find p from appropriate experiments,
but also to verify the fulfilment of the condition x > u
in these experiments. Note also that Egs. (2) and (3) do
not contain (; thus, the independence of experimental
®| and @, from this angle indicates that the fully
penetrated critical state has been reached in the plate.

In what follows we shall always assume that ®| >
0,ie,0 < pu < p1 where p1 ~ m. When p > u,
time-dependent instabilities are predicted to occur in
the critical state of the plate [9] and for this reason we
do not consider the case p > 1 below. Note that the
inequality p < p1 leads to a restriction on the thickness
of the plate from above.

The character of the magnetic relaxation turns out to

be different in the intervals 0 < p < po and p2 < p <
11, where in our approximation (x > ), the boundary
L2 separating these intervals satisfies the equation:

cosp+ pusinpy—1=0, (4)

ie.,, p2 ~ 0.742r. When 0 < p < pg, the creep rates
@ =d®|/dIintand @, = dP, /dInt are described by:

) T sinp — DBean
I ~ sm (b — (4 COS [ + Bea , (5)
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iancosu—&—usin,u—l 6)
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where the term, ®pean = (T/Uo)pojerd?/4, corre-
sponds to the creep rate in the usual Bean critical state
[this expression for ®pean is equivalent to Eq. (1)]. If
Ui ~ Uy, this term is relatively small (~ p/x) and
may be omitted. But it becomes important at small
i, when the first term in Eq. (5) tends to zero as .
At = pa, the rate &, reaches zero, and when g <
< p1, the transverse flux @, is locked in the sample,
&, = 0, and its relaxation will occur in a later stage
of the process. As to <f>|| for pa < p < p1 , one has

@ T (2—2cosp— psinp) n DBean
éeq Ur /.LSiI’l[,L éeq .

(7)

At u — 1, the rate <13|| diverges, which reflects the fact
that the critical state becomes unstable at p = p.

We have shown that if H > dj.1 /2, formulas (2),
(3), (5) - (7) enable one to extract from experimental
data the longitudinal critical current density, j., and
the effective height Uy of the barrier that prevents flux-
line cutting in the superconductor.
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