

Properties of MgB₂ in a two-gap superconductivity model

T.Örd^{a,1}, N.Kristoffel^b, K.Rägo^a

^a*Institute of Theoretical Physics, University of Tartu, Tähe 4, 51010 Tartu, Estonia*
^b*Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia*

Abstract

For MgB₂ where coexist two coupled superconductivity gaps a two-band scheme has been developed. Three interaction channels have been taken into account: a pair-transfer type $\sigma - \pi$ -interband repulsion, a σ -intraband effective attraction of electron-phonon nature, and a σ -intraband Coulomb interaction. The calculated temperature dependencies of gaps, heat capacity and H_{c2} agree with the experimental findings. The theoretical curve of T_c vs x for Mg_{1-x}Al_xB₂ follows the experimental data.

Key words:

MgB₂; two-band model; superconductivity and thermodynamic characteristics

A number of experiments point to the two-gap nature of the MgB₂ superconductivity [1-6]. The electron structure calculations [7,8] also support this conclusion by revealing the Fermi level intersection by boron σ - and π -bands. At the same time, there is no doubt in the presence of strong σ -intraband pairing interaction in MgB₂ [7,8], however, the mentioned circumstances suggest to introduce the interband pairing channels and the use of two-band models of superconductivity [5,9-12].

The linearized Hamiltonian of the system incorporating electron-phonon and Coulomb interactions in the effective σ -band, and the $\sigma - \pi$ scattering of intraband pairs is taken in the form

$$H = \sum_{\alpha\mathbf{k}s} \tilde{\epsilon}_\alpha(\mathbf{k}) a_{\alpha\mathbf{k}s}^+ a_{\alpha\mathbf{k}s} - \sum_{\alpha\mathbf{k}} \Delta_{\alpha\mathbf{k}} \langle a_{\alpha\mathbf{k}\uparrow}^+ a_{\alpha-\mathbf{k}\downarrow}^+ \rangle + \sum_{\alpha\mathbf{k}} (\Delta_{\alpha\mathbf{k}} a_{\alpha\mathbf{k}\uparrow}^+ a_{\alpha-\mathbf{k}\downarrow}^+ + \Delta_{\alpha\mathbf{k}}^* a_{\alpha-\mathbf{k}\downarrow} a_{\alpha\mathbf{k}\uparrow}), \quad (1)$$

where the superconductivity order parameters are defined as $\Delta_{\alpha\mathbf{k}} = 2 \sum_{\beta\mathbf{k}'} W_{\alpha\beta}(\mathbf{k}, \mathbf{k}') \langle a_{\beta-\mathbf{k}'\downarrow} a_{\beta\mathbf{k}'\uparrow} \rangle$. The band energies ($\alpha = 1$ for σ and $\alpha = 2$ for π) read $\epsilon_\alpha = \tilde{\epsilon}_\alpha + \mu$, where μ is the chemical potential.

¹ Corresponding author. E-mail: teetord@ut.ee

Other common designations are used. The gap equations ($\Theta = k_B T$)

$$\Delta_{\alpha\mathbf{k}} = - \sum_{\beta\mathbf{k}'} W_{\alpha\beta}(\mathbf{k}, \mathbf{k}') \Delta_{\beta\mathbf{k}'} \xi_{\beta\mathbf{k}'} \quad (2)$$

with $\xi_{\alpha\mathbf{k}} = E_\alpha^{-1}(\mathbf{k}) \tanh[E_\alpha(\mathbf{k})/2\Theta]$ contain the quasi-particle energies $E_\alpha(\mathbf{k}) = [\tilde{\epsilon}_\alpha^2(\mathbf{k}) + \Delta_{\alpha\mathbf{k}}^2]^{1/2}$. The gaps are taken to be real.

Describing the s-wave superconductivity of MgB₂ the σ -intraband coupling constant $W_{11} = V + U$ is supposed to contain a Coulombic part $U > 0$ besides the electron-phonon attraction $V < 0$ in the Debye-layer determined by $\hbar\omega_D = 0.06$ eV [13]. The repulsive interband coupling is characterized by the constant $W > 0$. Interactions U and W are operative in the energy interval from E_c to zero (σ -band top). The cut-off energy E_c determines the bands overlap region and is taken as $E_c = -2$ eV. Then the chemical potential of the undoped MgB₂ is $\mu = -0.6$ eV [7]. We characterize the effective σ - and π -bands by constant densities of states $\rho_1 = 0.25$ and $\rho_2 = 0.11$ (eV⁻¹) [7].

The necessary values of the interaction constants have been determined in [12] by simultaneous fitting of experimental data for T_c , the specific heat jump and the ratio of zero-temperature gaps. As a result $V_1 =$



Fig. 1. The MgB_2 superconductivity gaps *vs* temperature. Solid line - theory. Filled symbols - the experimental data of [2]; open symbols - the experimental data of [14].

-1.01 and $W = 0.53$ (eV) have been chosen, and according to an estimation $U = 1$ eV [12].

The temperature dependencies of the gaps on the Fermi level calculated from (2) agree well with the measured ones [2,14], as it is seen from Fig. 1.

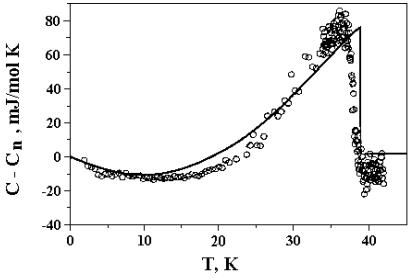


Fig. 2. The MgB_2 specific heat *vs* temperature. Solid line - theory. Points represent the experimental data of [15].

On the basis of Eqs. (1),(2) one can find the thermodynamic characteristics for MgB_2 . Theoretical curve of specific heat *vs* temperature in Fig.2 follows the experimental data of [15]. In Fig.3 the calculated temperature dependence of H_{C2} describes satisfactory the experimental data of [16]. At this the Ginzburg-Landau parameter value $\kappa=38$ [4] has been used.

For the calculation of $T_c(x)$ for $\text{Mg}_{1-x}\text{Al}_x\text{B}_2$ we have taken account of $\rho_{1,2}$ changes in the Debye layer near E_F with doping according to[8]. The result is shown in Fig.4 together with the experimental points from [17].

In conclusion, the model of present type seems to be able to describe the properties of the two-gap superconductor MgB_2 .

Acknowledgements

This work was supported by the Estonian Science Foundation Grant No 4961.

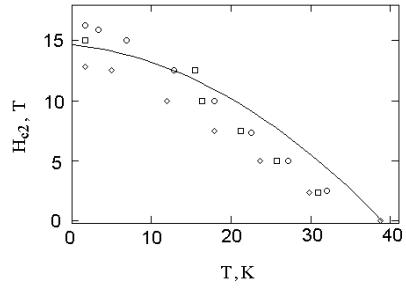


Fig. 3. The MgB_2 critical magnetic field H_{C2} *vs* temperature. Solid line - theory. Points represent the experimental data of [16].

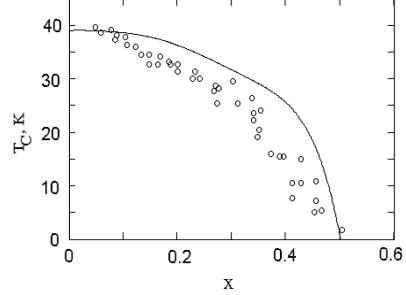


Fig. 4. The influence of doping on T_c in $\text{Mg}_{1-x}\text{Al}_x\text{B}_2$. Solid line - theory. Points represent the experimental data of [17].

References

- [1] S.Tsuda et al., Phys. Rev. Lett. **87** (2001) 177006.
- [2] P.Szabo et al., Phys. Rev. Lett. **87** (2001) 137005.
- [3] X.K.Chen et al., Phys. Rev. Lett. **87** (2001) 157002.
- [4] Y.Wang, T.Plackowski, and A.Junod, Physica C **355** (2001) 179.
- [5] F.Bouquet et al., Phys. Rev. Lett. **87** (2001) 047001.
- [6] F.Giubileo et al., Phys. Rev. Lett. **87** (2001) 177008.
- [7] J.M.An and W.E.Pickett, Phys. Rev. Lett. **86** (2001) 4366.
- [8] J.Kortus et al., Phys. Rev. Lett. **86** (2001) 4656.
- [9] A.Y.Liu, I.I.Mazin, and J.Kortus, Phys. Rev. Lett. **87** (2001) 087005 .
- [10] A.A.Golubov et al., cond-mat/0111262 v 1 (2001).
- [11] E.Bascones and F.Guinea, Phys. Rev. B **64** (2001) 214508.
- [12] T.Örd and N.Kristoffel, Physica C **370** (2002) 17.
- [13] S.L.Bud'ko et al., Phys. Rev. Lett. **86** (2001) 1877.
- [14] I.Bugoslavsky et al., cond-mat/0110296 (2001).
- [15] R.K.Kremer, B.J.Gibson, and K.Ahn, cond-mat/0102432 v 2 (2001).
- [16] S.L.Bud'ko et al., Phys. Rev. B **65** (2001) 220503(R).
- [17] P.Pastorino et al., cond-mat/0106356 (2001).