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T.Örd a,1, N.Kristoffel b, K.Rägo a
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Abstract

For MgB2 where coexist two coupled superconductivity gaps a two-band scheme has been developed. Three interac-
tion channels have been taken into account: a pair-transfer type σ − π-interband repulsion, a σ-intraband effective
attraction of electron-phonon nature, and a σ-intraband Coulomb interaction. The calculated temperature depen-
dencies of gaps, heat capacity and Hc2 agree with the experimental findings. The theoretical curve of Tc vs x for
Mg1−xAlxB2 follows the experimental data.
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A number of experiments point to the two-gap na-
ture of the MgB2 superconductivity [1-6]. The electron
structure calculations [7,8] also support this conclusion
by revealing the Fermi level intersection by boron σ-
and π-bands. At the same time, there is no doubt in
the presence of strong σ-intraband pairing interaction
in MgB2 [7,8], however, the mentioned circumstances
suggest to introduce the interband pairing channels
and the use of two-band models of superconductivity
[5,9-12].

The linearized Hamiltonian of the system incorpo-
rating electron-phonon and Coulomb interactions in
the effective σ-band, and the σ −π scattering of intra-
band pairs is taken in the form
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∑

αks
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αksaαks −

∑
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+
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+
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where the superconductivity order parameters are de-
fined as �αk = 2

∑
βk

′ Wαβ(k,k
′
) < aβ−k

′ ↓aβk
′ ↑ >.

The band energies (α = 1 for σ and α = 2 for π)
read εα = ε̃α + µ, where µ is the chemical potential.
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Other common designations are used. The gap equa-
tions (Θ = kBT )

�αk = −
∑

βk
′

Wαβ(k,k
′
)�βk

′ ξβk
′ (2)

with ξαk = E−1
α (k) tanh[Eα(k)/2Θ] contain the quasi-

particle energies Eα(k) = [ε̃2
α(k) + �2

αk]1/2. The gaps
are taken to be real.

Describing the s-wave superconductivity of MgB2

the σ-intraband coupling constant W11 = V +U is sup-
posed to contain a Coulombic part U > 0 besides the
electron-phonon attraction V < 0 in the Debye-layer
determined by h̄ωD = 0.06 eV [13]. The repulsive inter-
band coupling is characterized by the constant W > 0.
Interactions U and W are operative in the energy in-
terval from Ec to zero (σ-band top). The cut-off energy
Ec determines the bands overlap region and is taken
as Ec = −2 eV. Then the chemical potential of the un-
doped MgB2 is µ = −0.6 eV [7]. We characterize the
effective σ- and π-bands by constant densities of states
ρ1 = 0.25 and ρ2 = 0.11 (eV−1) [7].

The necessary values of the interaction constants
have been determined in [12] by simultaneous fitting
of experimental data for Tc, the specific heat jump and
the ratio of zero-temperature gaps. As a result V1 =
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Fig. 1. The MgB2 superconductivity gaps vs temperature. Solid

line - theory. Filled symbols - the experimental data of [2];

open symbols - the experimental data of [14].

−1.01 and W = 0.53 (eV) have been chosen, and ac-
cording to an estimation U = 1 eV [12].

The temperature dependencies of the gaps on the
Fermi level calculated from (2) agree wellwith the mea-
sured ones [2,14], as it is seen from Fig. 1.

Fig. 2. The MgB2 specific heat vs temperature. Solid line -

theory. Points represent the experimental data of [15].

On the basis of Eqs. (1),(2) one can find the thermo-
dynamic characteristics for MgB2. Theoretical curve of
specific heat vs temperature in Fig.2 follows the exper-
imental data of [15]. In Fig.3 the calculated tempera-
ture dependence of HC2 describes satisfactory the ex-
perimental data of [16]. At this the Ginzburg-Landau
parameter value κ=38 [4] has been used.

For the calculation of Tc(x) for Mg1−xAlxB2 we have
taken account of ρ1,2 changes in the Debye layer near
EF with doping according to[8]. The result is shown in
Fig.4 together with the experimental points from [17].

In conclusion, the model of present type seems to be
able to describe the properties of the two-gap super-
conductor MgB2.
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Fig. 3. The MgB2 critical magnetic field HC2 vs temperature.

Solid line - theory. Points represent the experimental data of

[16].

Fig. 4. The influence of doping on Tc in Mg1−xAlxB2. Solid

line - theory. Points represent the experimental data of [17].
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