

MgB₂: superconductivity and pressure effects

V.A. Ivanov ^{a,b,1}, J. J. Betouras ^a, F.M. Peeters ^a

^aDepartement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1,
B-2610 Antwerpen, Belgium

^bN.S. Kurnakov Institute of General and Inorganic Chemistry
of the Russian Academy of Sciences, Leninskii prospekt 31, 117 907 Moscow, Russia

Abstract

The Ginzburg-Landau (GL) theory for a two-band superconductor is constructed with emphasis on MgB₂. Then the microscopic theory of superconducting MgB₂ is presented with SC order parameter of s^* -wave symmetry. The superconducting density of electronic states (DOS) and the pressure effects are discussed.

Key words: Ginzburg-Landau equation; electron correlation; density of states

The discovery of superconducting MgB₂ [1] poses fundamental questions regarding the nature of superconductivity. MgB₂ belongs to the space group $P6/mmm$ and the electronic structure is organized by the narrow energy bands with near two-fold degenerate σ -electrons and the wide-band π -electrons.

The GL free energy functional for MgB₂ is:

$$F = \int d^3r \left\{ \frac{1}{2m_\sigma} |\Pi\psi_\sigma|^2 + \alpha_\sigma |\psi_\sigma|^2 + \beta_\sigma |\psi_\sigma|^4 + \frac{1}{2m_\pi} |\Pi\psi_\pi|^2 + \alpha_\pi |\psi_\pi|^2 + \beta_\pi |\psi_\pi|^4 + r(\psi_\sigma^* \psi_\pi + \psi_\sigma \psi_\pi^*) + \gamma_1 (\Pi_x \psi_\sigma \Pi_x^* \psi_\pi^* + \Pi_y \psi_\sigma \Pi_y^* \psi_\pi^* + c.c.) + \gamma_2 (\Pi_z \psi_\sigma \Pi_z^* \psi_\pi^* + c.c.) + \beta |\psi_\sigma|^2 |\psi_\pi|^2 + \frac{(\nabla \times \mathbf{A})^2}{8\pi} \right\},$$

where $\Pi = -i\hbar\nabla - 2e/c\mathbf{A}$, \mathbf{A} is the vector potential, $\alpha_{\sigma,\pi} = \alpha_{\sigma,\pi}^0 (T - T_{c\sigma,\pi}^0)$.

If $r = 0$ then the above Eq is the free energy without Josephson coupling between two bands. The effect of the pressure on two order parameters is to shift the T_c 's. The new T_c 's can be found by solving Eqs. for $|\psi_{\sigma,\pi}|^2$ and then setting the coefficients of $|\psi_{\sigma,\pi}|^2$ to zero. To detect the $T_{c\sigma,\pi}$ splitting, the pressure must be above a certain value, depending on the experimental resolu-

tion. If $r \neq 0$ the superconductivity in one band generates the superconductivity in the other with a single T_c . From the GL minimization we get $\alpha_\pi \alpha_\sigma / 2\beta_\sigma = -r^2$ at $T_{c\sigma}^0 > T > T_{c\pi}^0$. with the pressure dependence

$$T_c(p) = \frac{1}{2} [T_{c\sigma}^0 + T_{c\pi}^0 - (\eta_\pi + \eta_\sigma)p] + \frac{1}{2} [(T_{c\sigma}^0 - T_{c\pi}^0 + (\eta_\pi - \eta_\sigma)p)^2 - a^2]^{1/2} \quad (1)$$

and $a^2 = 8\beta_\sigma r^2 / (\alpha_\pi^0 \alpha_\sigma^0)$. In experiments the deviations from a straight line at moderate pressure [2] can be attributed to the two bands.

The next effect we address is the splitting of the two σ bands at ambient pressure due to frozen E_{2g} modes. The band σ_2 below the Fermi level at ambient pressure [3] can overcome the barrier and get above the Fermi level at a certain pressure p_c , restoring the degeneracy of the two σ bands at Γ point. The energy difference between the two subbands is approximated by $(1 - n_\sigma)^2 \Delta$, where the carrier density per boron atom in MgB₂ is $1 - n_\sigma \sim 0.03$. The p_c suppresses the deformation potential Δ and can be estimated by the expression $p_c \Omega \sim (1 - n_\sigma) \sqrt{\Delta}$ where $\Omega = 30 \text{ \AA}^3$ is a unit cell volume of MgB₂ and $\Delta = 0.04 \text{ eV}^2$ for a boron displacement $u \sim 0.03 \text{ \AA}$ [4]. At these parameters the crossover pressure is $p_c \sim 15 \text{ GPa}$. The physics of the crossover is similar in spirit to the Lifshits transition of 5/2 kind

¹ E-mail: ivanov@uia.ua.ac.be

[5]. The additional term which couples the order parameters with the strain tensor ϵ in the regime where $p > p_c$ is $F_{strain} = -C_1(\Gamma_1)[\delta(\epsilon_{xx} + \epsilon_{yy}) + \epsilon_{zz}]|\psi_\sigma|^2 - C_2(\Gamma_1)(\epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz})|\psi_\pi|^2$ (δ is given in terms of the elastic constants). The expected behavior is a change of slope of T_c and an increase of the order parameter $|\psi_\sigma|$ at p_c . This anomaly can be detected directly in a penetration depth experiment under pressure.

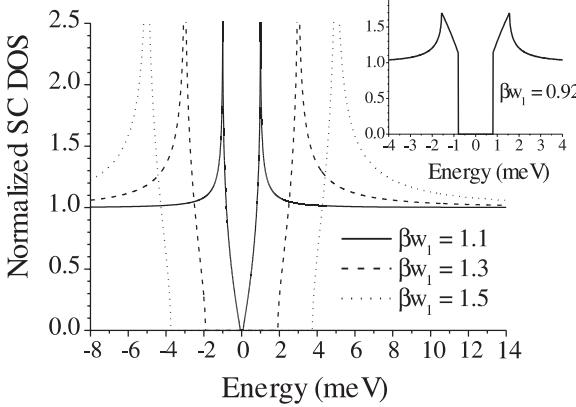


Fig. 1. The superconducting DOS, normalized with respect to the normal DOS, for the Coulomb parameter range $\beta w_1 > 1$. Inset: at $\beta w_1 = 0.92$ the result of Ref [6] is reproduced.

In the microscopic model the on-site correlations of σ -electrons are taken to be infinite. The wide π -band is shifted with respect to the σ -band by an energy r , comprising the electron-phonon interactions. The hopping between σ - and π -electrons is assumed to be negligible due to the symmetry of the orbitals. Also the nearest neighbour Coulomb repulsion V of σ -electrons is included in model. The model is mapped to X -operator basis, describing the on-site transitions of σ -electrons between the one-particle ground states (with spin projection s) and the empty polar electronic states (0) of the boron sites. The diagonal X -operators satisfy the completeness relation, $X^0 + 4X^s = 1$. Due to the orbital and spin degeneracy the σ -electrons have density $n_\sigma = 4 \langle X^s \rangle$ per boron site. The correlation factor for the degenerated σ -electrons is $f = \langle X^0 + X^s \rangle = 1 - 3 \langle X^s \rangle = 1 - 3n_\sigma/4$, providing the σ -band narrowing. It plays an important role in all X -operator machinery. In $Mg^{++}B^- (p^{n_\sigma} p^{n_\pi})_2$ the chemical potential has to be such that the constraint $n_\sigma + n_\pi = 2$ for the electron densities is satisfied. The non-correlated π -electrons play the role of a reservoir for the σ -electrons.

The superconductivity is governed by the kinematic and Coulomb vertices: $\Gamma_0(p, q) = -2t_q + V(p - q)$, where $V(p - q) = 2\beta t_p t_q$ ($\beta = V/6t^2$) near the $\Gamma - A$ line of the Brillouin zone, t_p is the σ -energy dispersion. The equation of the anomalous self-energy for the σ -electrons defines both T_c and the gap function $\Sigma = \Sigma_0(1 - \beta t_p) = b(1 + a \cos^2 \vartheta)$ ($a =$

$\beta w_1 / (12(1 - \beta w_1))$, $b = \Sigma_0(1 - \beta w_1)$, where ϑ is the azimuthal angle) of s^* -wave symmetry and $2w_1$ is the σ -bandwidth. The MgB_2 position, $T_c = 40$ K, corresponds to $r = 0.085$ eV and a dimensionless value $\beta w_1 = 1.2$ on the bell shaped curve $T_c(r)$ [7].

The near-cylindrical σ -Fermi surfaces in MgB_2 gives room to calculate the superconducting DOS. For an enhanced Coulomb repulsion $\beta w_1 > 1$ the normalized superconducting DOS (Fig. 2) is

$$\frac{\rho((1 - |a|)b < E < b)}{\rho_0(E)} = \frac{1}{s} \sqrt{\frac{E}{2|a|b}} F\left(\sin^{-1} \frac{1}{q}; \frac{1}{s}\right)$$

$$\frac{\rho(E > b)}{\rho_0(E)} = \sqrt{\frac{E}{2|a|b}} F\left(\sin^{-1} q; s\right). \quad (2)$$

where $q = \sqrt{(E - b)/2E}$ and $s = \sqrt{(E + b)/2E}$. Two logarithmic divergencies at $E = \pm b$ and a gap in the energy range $|E| < (1 - |a|)b$ are manifested in experiments as two-gap ratio is $1/(1 - |a|)$. Spectroscopic measurements [8–11] revealed the presence of two gap sizes, from which one can derive the Coulomb parameter βw_1 in the range $1.14 - 1.21$.

We have done a GL analysis of the superconductivity in MgB_2 with particular attention to pressure effects. The superconducting DOS has been analyzed in a model with the s^* -wave superconductivity driven by the kinematic interaction in the σ -band. In our approach the electron-phonon effects are hidden in the parameter r .

This work was supported by the Flemish Science Foundation (FWO-VL), the Concerted Action program (GOA), the Inter-University Attraction Poles research program (IUAP-IV) and the University of Antwerp (UIA).

References

- [1] J. Nagamatsu *et al.*, Nature **410**, 63 (2001).
- [2] J. S. Schilling *et al.*, to appear in: *Studies of High-Temperature Superconductors* (ed. A. Narlikar), Vol. 38, (Nova Science, NY, 2002).
- [3] J. M. An and W. E. Pickett, Phys. Rev. Lett. **86**, 4366 (2001).
- [4] T. Yildirim *et al.*, Phys. Rev. Lett. **87**, 037001 (2001).
- [5] I. M. Lifshits, Sov. Phys. JETP **11**, 1130 (1960).
- [6] S. Haas and H. Maki, Phys. Rev. B **65**, 020502 (2002).
- [7] V. Ivanov, M. van den Broek and F.M. Peeters, Solid State Commun. **120**, 53 (2001).
- [8] F. Giubileo *et al.*, Europhys. Lett. **02**, 764 (2002).
- [9] S. Tsuda *et al.*, Phys. Rev. Lett. **87**, 177006 (2001).
- [10] P. Szabo *et al.*, Phys. Rev. Lett. **87**, 137005 (2001).
- [11] F. Bouquet *et al.*, Phys. Rev. Lett. **87**, 047001 (2001).