

A critical-current jump triggered by vortex-lattice screw dislocations

Ken Sugawara¹

Ibaraki Polytechnic College, 864-4 Suifu-cho, Mito, Ibaraki 310-0005, Japan

Abstract

The energy of vortex-lattice screw dislocations was computed numerically by basing upon the isotropic London approximation. Applying the computation results to the Larkin-Ovchinnikov pinning theory leads to a prediction that a vortex lattice possesses high-density screw dislocations stably for sufficiently strong pinning. In a superconducting film, penetration of the high-density screw dislocations results in a discontinuous jump of the critical current.

Key words: flux pinning; flux-line lattice; critical currents

1. Introduction

Wördenweber and Kes [1] have discovered the vortex-lattice (VL) pinning dimensional crossover accompanying a critical-current jump in Nb_xGe ($x \simeq 3$) films. In those samples, although two-dimensional (2-D) pinning agrees well with the Larkin-Ovchinnikov [2] (LO) theory, three-dimensional (3-D) pinning deviates far from the LO theory.

This disparity is probably because the observed crossover arises from plastic vortex-line bending, viz., VL-screw-dislocation penetration [1]; the LO theory premises elastic bending. Although pinning theory for dislocation-rich VL has been proposed by Mullock and Evetts [3], who modified the LO theory, the modified theory cannot avoid yet the disparity. I believe this attributable to deficient evaluation of the nonlocal effect in VL tilt elasticity.

Taking account of the nonlocal effect, I have computed the VL-screw-dislocation energy numerically within a framework of the isotropic London approximation. I report here the results of that computation, and predict a critical-current jump triggered by VL screw dislocations from those results. This prediction is compared with the observation in Nb_xGe .

¹ Present address: Department of Atomic Energy, Kanto Polytechnic College, Mito Branch, 864-4 Suifu-cho, Mito, Ibaraki 310-0005, Japan. E-mail: sugawara@ibaraki-pc.ac.jp

2. Computation results

Suppose that VL screw-dislocation lines are spaced D_{SD} apart into a domain wall perpendicular to the flux density \mathbf{B} : the Burgers vectors of two adjacent slip planes are antiparallel. Then the screw-dislocation line energy density E_{SD} can be expressed as [4,5]

$$E_{\text{SD}} = E_{\text{SD}}^{(0)}(D_{\text{SD}}) + \frac{\alpha_{\text{SD}}(D_{\text{SD}})}{L_{\text{SD}}}, \quad (1)$$

where L_{SD} is the mean distance between the domain walls.

Figure 1 shows the results of numerical computation of $E_{\text{SD}}^{(0)}/D_{\text{SD}}$ and $\alpha_{\text{SD}}/D_{\text{SD}}$ for Ginzburg-Landau parameter $\kappa = 100$. The VL constant a_0 is set equal to $5\lambda/\kappa$. As demonstrated in this figure, $E_{\text{SD}}/D_{\text{SD}}$ has the minimum at $D_{\text{SD}} \simeq a_0$ for sufficiently short L_{SD} .

3. Theoretical prediction

According to the Mullock-Evetts [3] argument, the volume energy density of a screw-dislocation-rich pinned VL is given by [4]

$$U = \frac{1}{2} c_{66} \left(\frac{a_0}{2R_c} \right)^2 + \frac{E_{\text{SD}}}{D_{\text{SD}} L_{\text{SD}}} - \frac{a_0}{2} F_p, \quad (2)$$

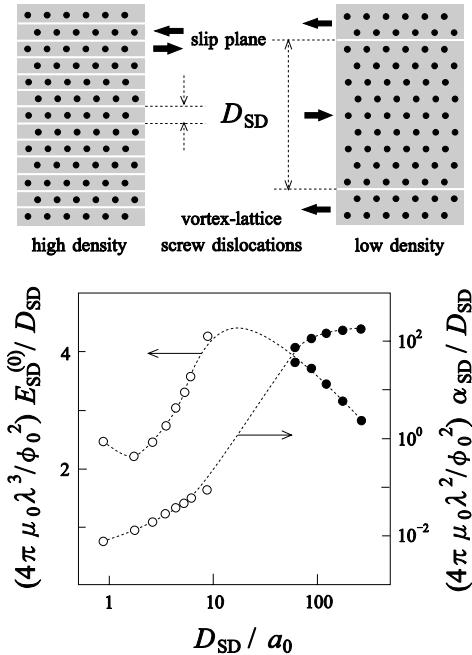


Fig. 1. VL-screw-dislocation line energy density E_{SD} per slip-plane spacing D_{SD} ; $E_{SD}^{(0)}/D_{SD}$ and α_{SD}/D_{SD} are scaled by each unit including the London length λ and the flux quantum ϕ_0 . The open circles represent high-density ($D_{SD} \sim a_0$) approximation [4], and the solid circles represent low-density ($D_{SD} \gg a_0$) approximation [5].

where c_{66} is the VL shear modulus, R_c is the transverse short-range-order length of the VL, and F_p is the volume pinning-force density. When pinning centers with number density n exert elementary forces f_p each on vortices, we can put [4]

$$F_p = \left(\frac{n\langle f_p^2 \rangle}{R_c^2 L_{SD}} \right)^{1/2}. \quad (3)$$

Minimizing U gives R_c , D_{SD} , and L_{SD} for an equilibrium state. From the result shown in Fig. 1, it follows that U is minimized for $D_{SD}/a_0 = \sqrt{3}$.

In a superconducting film with thickness d ($< L_{SD}$), the screw-dislocation energy term is excluded from Eq. (2), and L_{SD} in Eq. (3) is replaced by d [1,2]. However, when U for 2-D pinning exceeds U given by Eq. (2), 3-D pinning turns more stable than 2-D pinning. Then high-density screw dislocations penetrate into the film, and the relation $d \gg L_{SD}$ leads to a discontinuous F_p jump (i.e., a critical-current jump) [4].

Figure 2 shows such a dimensional crossover in a hypothetical material, which is a film superconductor with thickness $d = 10 \mu\text{m}$ and upper critical field $\mu_0 H_{c2} = 1 \text{ T}$ ($\kappa = 100$). The reduced flux density $b \equiv B/\mu_0 H_{c2}$ is set equal to 0.2, i.e., $\kappa a_0/\lambda \simeq 5$. When $n\langle f_p^2 \rangle > 5.9 \times 10^{-7} \text{ N}^2/\text{m}^3$, the vortices form an amorphous pattern ($R_c \rightarrow a_0$).

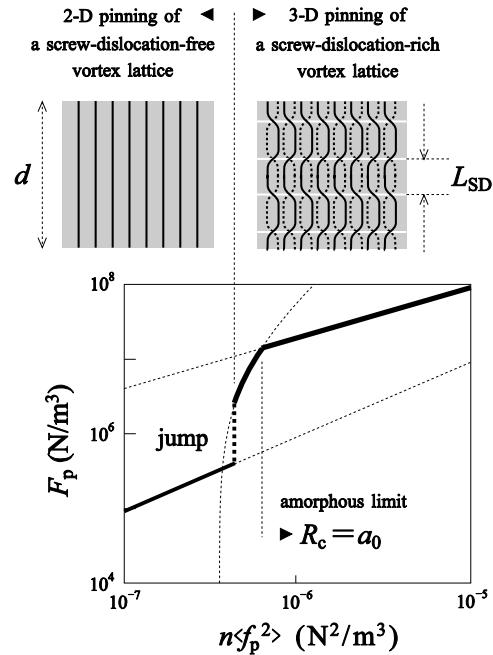


Fig. 2. A discontinuous jump of the volume pinning-force density F_p in a hypothetical material, i.e., a film superconductor with a finite thickness d [4].

4. Comparison with experiment

An experimental candidate for the above theoretical prediction is the critical-current jump in Nb_xGe films [1], which have properties similar to those of the hypothetical material in Fig. 2 (e.g., $d = 18 \mu\text{m}$, $\mu_0 H_{c2} = 4.5 \text{ T}$ at 2.1 K, and $\kappa = 65$). Applying the 2-D LO theory to the Nb_xGe films gives $n\langle f_p^2 \rangle/b(1-b)^2 \sim 10^{-6} \text{ N}^2/\text{m}^3$. On the other hand, the film in Fig. 2 displays the jump at $n\langle f_p^2 \rangle/b(1-b)^2 = 3.4 \times 10^{-6} \text{ N}^2/\text{m}^3$. The two values of $n\langle f_p^2 \rangle/b(1-b)^2$ are comparable. However, we should note that the jump in Nb_xGe was observed near H_{c2} . In contrast, the jump in Fig. 2 is predicted on the premise of $B \ll \mu_0 H_{c2}$, which validates the London approximation.

For further decent comparison, it is necessary to compute E_{SD} near H_{c2} , or to observe the critical-current jump under low flux densities in Nb_xGe .

References

- [1] R. Wördenweber, P. H. Kes, *Cryogenics* **29** (1989) 321.
- [2] A. I. Larkin, Yu. N. Ovchinnikov, *J. Low Temp. Phys.* **34** (1979) 409.
- [3] S. J. Mullock, J. E. Evetts, *J. Appl. Phys.* **57** (1985) 2588.
- [4] K. Sugawara, *Phys. Rev. B* **64** (2001) 174512.
- [5] The details of the numerical computation will be described in a forthcoming paper.