A critical-current jump triggered by vortex-lattice screw dislocations
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Abstract

The energy of vortex-lattice screw dislocations was computed numerically by basing upon the isotropic London
approximation. Appling the computation results to the Larkin-Ovchinnikov pinning theory leads to a prediction that
a vortex lattice possesses high-density screw dislocations stably for sufficiently strong pinning. In a superconducting
film, penetration of the high-density screw dislocations results in a discontinuous jump of the critical current.
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1. Introduction

Wordenweber and Kes [1] have discovered the
vortex-lattice (VL) pinning dimensional crossover ac-
companying a critical-current jump in Nb,Ge (z ~ 3)
films. In those samples, although two-dimensional (2-
D) pinning agrees well with the Larkin-Ovchinnikov
[2] (LO) theory, three-dimensional (3-D) pinning de-
viates far from the LO theory.

This disparity is probably because the observed
crossover arises from plastic vortex-line bending, viz.,
VL-screw-dislocation penetration [1]; the LO theory
premises elastic bending. Although pinning theory for
dislocation-rich VL has been proposed by Mullock and
Evetts [3], who modified the LO theory, the modified
theory cannot avoid yet the disparity. I believe this
attributable to deficient evaluation of the nonlocal
effect in VL tilt elasticity.

Taking account of the nonlocal effect, I have com-
puted the VL-screw-dislocation energy numerically
within a framework of the isotropic London approxi-
mation. I report here the results of that computation,
and predict a critical-current jump triggered by VL
screw dislocations from those results. This prediction
is compared with the observation in Nb,Ge.
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2. Computation results

Suppose that VL screw-dislocation lines are spaced
Dsp apart into a domain wall perpendicular to the
flux density B: the Burgers vectors of two adjacent slip
planes are antiparallel. Then the screw-dislocation line
energy density Fsp can be expressed as [4,5]

asp(Dsp) (1)

Esp = Eé%) (Dsp) + 7

where Lgp is the mean distance between the domain
walls.

Figure 1 shows the results of numerical computation
of Eé?D)/DSD and asp/Dsp for Ginzburg-Landau pa-
rameter k = 100. The VL constant ag is set equal to
5A/k. As demonstrated in this figure, Esp/Dsp has
the minimum at Dsp =~ ag for sufficiently short Lsp.

3. Theoretical prediction

According to the Mullock-Evetts [3] argument,
the volume energy density of a screw-dislocation-rich
pinned VL is given by [4]

1 ao \2 Esp ao
v g €00 (QRC) + Dsp Lsp 27 @
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Fig. 1. VL-screw-dislocation line energy density FEsp per
slip-plane spacing Dsp; Eéog/DsD and asp/Dsp are scaled
by each unit including the London length A\ and the flux quan-
tum ¢o. The open circles represent high-density (Dsp ~ ao)
approximation [4], and the solid circles represent low-density
(Dsp > ao) approximation [5].

where ceg is the VL shear modulus, R. is the transverse
short-range-order length of the VL, and Fj, is the vol-
ume pinning-force density. When pinning centers with
number density n exert elementary forces f, each on
vortices, we can put [4]

oy N\ 1/2
- (m) 3

R2Lsp

Minimizing U gives R., Dsp, and Lgp for an equilib-
rium state. From the result shown in Fig. 1, it follows
that U is minimized for Dsp/ao =/3.

In a superconducting film with thickness d (< Lgp),
the screw-dislocation energy term is excluded from
Eq. (2), and Lgp in Eq. (3) is replaced by d [1,2].
However, when U for 2-D pinning exceeds U given by
Eq. (2), 3-D pinning turns more stable than 2-D pin-
ning. Then high-density screw dislocations penetrate
into the film, and the relation d>> Lsp leads to a dis-
continuous F, jump (i.e., a critical-current jump) [4].

Figure 2 shows such a dimensional crossover in a
hypothetical material, which is a film superconduc-
tor with thickness d =10 pm and upper critical field
noHs2 =1 T (k =100). The reduced flux density b=
B/poHez is set equal to 0.2, i.e., kao/A ~ 5. When
n{f2)>5.9 x 10~" N?/m?, the vortices form an amor-
phous pattern (R —ag).
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Fig. 2. A discontinuous jump of the volume pinning-force den-
sity F, in a hypothetical material, i.e., a film superconductor
with a finite thickness d [4].

4. Comparison with experiment

An experimental candidate for the above theoretical
prediction is the critical-current jump in Nb,Ge films
[1], which have properties similar to those of the hypo-
thetical material in Fig. 2 (e.g., d=18 pm, poHc2=4.5
T at 2.1 K, and x = 65). Applying the 2-D LO the-
ory to the Nb,Ge films gives n(fz)/b(1—b)*> ~ 107°
N2/m®. On the other hand, the film in Fig. 2 displays
the jump at n(fz)/b(1—b)>=3.4 x 107° N®/m®. The
two values of n(f2)/b(1—b)? are comparable. However,
we should note that the jump in Nb,Ge was observed
near Hcs. In contrast, the jump in Fig. 2 is predicted
on the premise of B < o Hc2, which validates the Lon-
don approximation.

For further decent comparison, it is necessary to
compute Fsp near Hc2, or to observe the critical-
current jump under low flux densities in Nb, Ge.
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