

Possibility of unconventional superconductivity of $\text{SrTiO}_{3-\delta}$

Martin Jourdan¹, Hermann Adrian

Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany

Abstract

$\text{SrTiO}_{3-\delta}$ can show metallic behavior and superconductivity at $T < 500\text{mK}$. Due to its low carrier concentration ($\simeq 10^{20}\text{cm}^{-3}$) and huge dielectric polarisability ($\epsilon \simeq 300$) this compound is considered as a candidate for a polaronic superconducting pairing mechanism.

It is demonstrated that by variation of the annealing temperature in vacuum the transport properties of $\text{SrTiO}_{3-\delta}$ can be tuned continuously from semiconducting to metallic. We present measurements of the upper critical field $B_{c2}(T)$ which show near T_c a positive curvature. This unusual temperature dependence is consistent with a model of weakly interacting charged bosons which condense in the superconducting state (local pairing). However, measurements of current-voltage curves reveal only small critical currents of our samples. This observation is discussed in the framework of doping inhomogeneities.

Key words: bipolaronic superconductivity; SrTiO_3 ; $B_{c2}(T)$

1. Introduction

One of the first attempts to explain superconductivity was considering the condensation of a charged ideal Bose gas [1]. After the establishment of the BCS-theory this concept was considered as the basis of an unconventional mechanism of superconductivity [2], [3]. The basic idea is that polarons pair to bipolarons which then condense into a superfluid like state [4]. Although this theory seems not to apply to HT_c superconductors [5], there are other materials which are candidates for bipolaronic superconductivity; and $\text{SrTiO}_{3-\delta}$ is among these. The stoichiometric compound is an insulator, but doped it becomes conducting and even superconducting ($T_c < 0.5\text{K}$) [6]. The formation of polaronic charge carriers in doped SrTiO_3 is confirmed by several experimental observations (e. g. [7],[8]).

However, up to now there are no clear experimental indications of a pairing of the polarons and bipolaronic superconductivity in SrTiO_3 .

2. Experiment

The sample preparation started from commercially available $\text{SrTiO}_3(111)$ substrates of size $10 \times 10 \times 1\text{mm}$. For the definition of the contact pads two Mo stripes of width $400\mu\text{m}$ and distance of $200\mu\text{m}$ from each other were evaporated on two opposing sides of a substrate. Afterwards, the backsides of the substrates were polished down to a final sample thickness of $\simeq 300\mu\text{m}$. Then the samples were reduced in an MBE chamber ($p \simeq 10^{-8}$ mbar) for 1h at $T \simeq 1150\text{K}$. Finally, the substrates were cut into stripes of width $\simeq 700\mu\text{m}$. (see fig. 1)

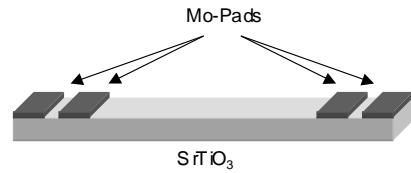


Fig. 1. Geometry of the $\text{SrTiO}_{3-\delta}$ samples with contact pads (schematic, not to scale).

¹ Corresponding author. E-mail: jourdan@mail.uni-mainz.de

Resistance measurements were performed in a standard 4-probes technique in a ^3He and a dilution cryostat. Depending on the reduction temperature it is possible to tune the resistivity of $\text{SrTiO}_3-\delta$ continuously from semiconducting to metallic. $R(T)$ curves are shown in fig. 2.

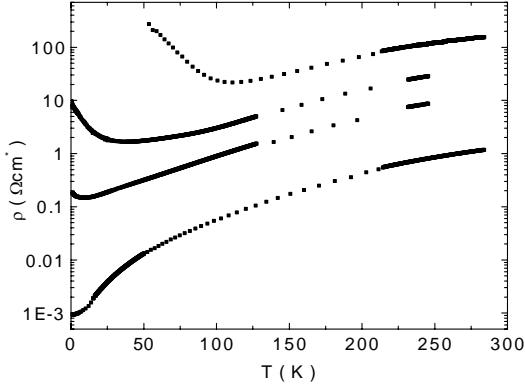


Fig. 2. Temperature dependent resistivity $R(T)$ of $\text{SrTiO}_3-\delta$ with increasing oxygen reduction. (*) Specific resistivity calculated with the assumption of homogeneous doping in the sample.)

The upper critical field $H_{c2}(T)$ of superconducting $\text{SrTiO}_3-\delta$ was determined by measuring $R(T)$ curves in different magnetic fields in a dilution cryostat. Samples with high critical temperatures ($T_c > 200\text{mK}$) show sharp superconducting transitions ($\Delta T_c < 3\text{mK}$), whereas samples with reduced T_c have strongly broadened transitions with $\Delta T_c \simeq 50\text{mK}$. However, ΔT_c is independent of the applied magnetic field and used measurement current. The obtained $B_{c2}(T)$ curves of two samples with different reduction level are shown in fig. 3.

The critical current density in zero field of the samples is only of the order of $1\text{A}/\text{cm}^2$. This small value and the shape of the $V(I)$ -curves are evidences that the doping of the samples is not homogeneous, which is consistent with the observations of ref. [10]. Although normal conductivity of $\text{SrTiO}_3-\delta$ is not limited to a surface layer, superconductivity is. However, the measurement current employed to determine the H_{c2} data had to be chosen carefully to avoid critical current effects.

3. Conclusions

It is obvious that the temperature dependence of B_{c2} differs strongly from the usual properties of BCS superconductors. Specifically, the magnitude of the upper critical field is relatively large, considering the values of T_c and $\frac{dH_{c2}}{dT}(T_c)$. Additionally, the curvature of $B_{c2}(T)$

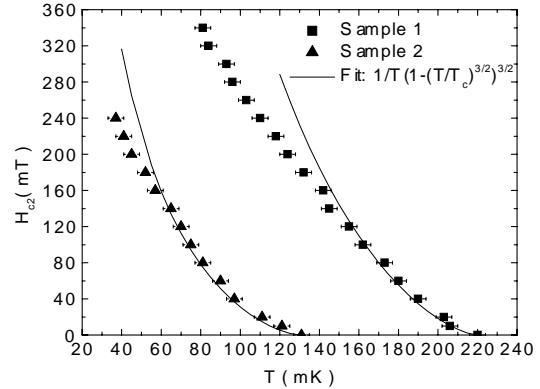


Fig. 3. Temperature dependence of the upper critical field of two $\text{SrTiO}_3-\delta$ samples with different reduction level. Magnetic field direction perpendicular to sample surface and current direction. The fits shown are according to Aleksandrov's theory of bipolaronic superconductivity [9].

is positive (less pronounced for samples with increased T_c). As a possible explanation for these observations we suggest the theory of bipolaronic superconductivity [11]. Calculations by A. Alexandrov, which are valid only close to T_c , predict the positive curvature as well as large upper critical fields. Fitted curves according to this theory are shown in fig. 3. However, a detailed discussion will also have to consider further possible explanations like an inhomogeneous superconducting state or conventional multigap superconductivity.

This work was supported by the Materialwissenschaftliches Forschungszentrum (MWFZ) Mainz. Thanks to M. Huth for valuable discussions.

References

- [1] M. R. Schafroth, Phys. Rev. **100** (1955) 463.
- [2] N. Mott, Nature **327** (1987) 185.
- [3] D. Emin, Phys. Rev. Lett. **62** (1989) 1544.
- [4] A. Alexandrov and J. Ranninger, Phys. Rev. B **23** (1981) 1796.
- [5] B. K. Chakraverty, J. Ranninger, and D. Feinberg, Phys. Rev. Lett. **81** (1998) 433.
- [6] J. F. Schooley et al., Phys. Rev. Lett. **14** (1965) 305.
- [7] F. Gervais et al., Phys. Rev. B **47** 8187.
- [8] D. M. Eagles, M. Georgiev and P. C. Petrova, Phys. Rev. B **54** (1996) 22.
- [9] A. S. Alexandrov, D. A. Samarchenko, and S. V. Traven, Sov. Phys. JETP **66** (1987), 567.
- [10] K. Szot et al., Phys. Rev. Lett. **88** (2002) 075508.
- [11] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. **62** (1990) 113.