

Fig. 1. Field dependence of the critical current density J_c for various values of x in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$. The inset shows the J_c at 70K as a function of x for $\mu_0 H=2.0$ T.

elsewhere [1].

3. Result and Discussion

Figure 1 shows the magnetic field dependence of the J_c at 70K for $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ (YPBCO) samples with various x . For all samples, J_c monotonically decreases as the field increases. The important point to note is that a shoulder-like feature appears in each curve. Furthermore, the bend at the beginning of the “shoulder” becomes remarkable as x increases, which leads to the enhancement of J_c in the field. This feature may indicate that many pinning centers are induced in the presence of magnetic field, and the density of these centers increases with Pr-doping. The enhancement of J_c is manifest from the Pr-concentration dependence of J_c for $\mu_0 H=2$ T, as shown in the inset of Fig.1. This inset clearly exhibits the occurrence of a maximum of J_c at $x=0.05$. From this result, we may say that a little amount of Pr-doping in YBCO introduces the effective pinning centers that act in the presence of the field.

Figure 2 shows the magnetic field dependence of the J_c at 70K and the temperature dependence of the χ (inset) for $(Y_{0.95-y}Pr_{0.05}Ca_y)Ba_2Cu_3O_{7-\delta}$ samples with various y . The figures indicate that the additional Ca-doping, which is expected to supply the mobile holes to the CuO_2 planes [4], does not cause the further increase in both T_c and J_c . Moreover, it should be noted that there is no significant variation in the shape of the “shoulder” with Ca-doping. The decrease in T_c with Ca-doping may indicate that the hole doping due to the Ca substitution makes the superconducting matrix of YBCO turn into the overdoping region. In addition, from the invariability of the “shoulder” shape, we may say that the Ca-doping does not induce the inhomogeneities that will act as the pinning centers in the system.

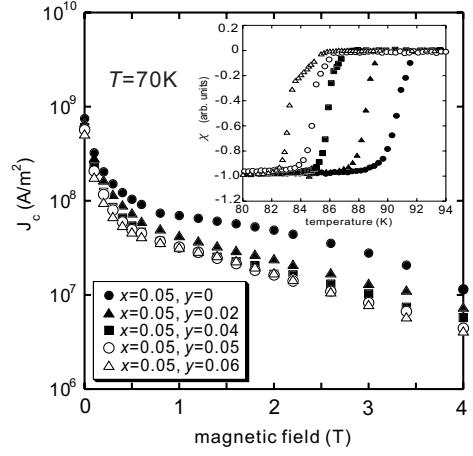


Fig. 2. Field dependence of the critical current density J_c for various values of y in $(Y_{0.95-y}Pr_{0.05}Ca_y)Ba_2Cu_3O_{7-\delta}$. The inset shows temperature dependence of the ac diamagnetic susceptibility χ for these samples.

geneities that will act as the pinning centers in the system.

4. Conclusion

The effects of Pr- and Ca- doping on J_c and T_c in YBCO have been investigated. We found that a little amounts of Pr-doping introduces the effective pinning centers, which especially act in the presence of magnetic field, and enhance the J_c remarkably in the field. However, the additional Ca-doping to optimally Pr-doped samples ($x=0.05$) does not lead to the further increase in J_c and T_c .

Acknowledgements

The authors would like to acknowledge Dr. N. Hosooito and Mr. S. Ueda of Kyoto University for their experimental support.

References

- [1] T. Harada and K. Yoshida, Physica C (in press).
- [2] W. J. Gallagher, T. K. Worthington, T. R. Dinger, F. Holtzberg, D. K. Kaiser and R. L. Sandstrom, Physica B 148 (1987) 288.
- [3] C. P. Bean, Phys. Rev. Lett. 8 (1962) 250
- [4] J. J. Neumeier, T. Bjørnholm, M. B. Maple and I. K. Schuller, Phys. Rev. Lett. 63 (1989) 2516