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Abstract

A metal-insulator transition (MIT) in two-dimensional systems at T = 0 is regarded as a consequence of flattening
the (in fact three-dimensional) electronic waveguide which is formed in heterostructures due to application of a
confinement potential. The waveguide flattening is accompanied by a stick-slip change in the number of extended
waveguide modes (conducting channels), of which the last mode disappearance is identified as MIT.
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1. Introduction

According to the scaling theory of localization [1],
there can be no metallic ground state of two-
dimensional (2D) systems at any strength of disorder.
This assertion, however, is in apparent conflict with a
bulk of experimental results obtained in recent decades
on different 2D electron and hole systems, which
clearly show the resistance anomalies characteristic
for metal-insulator transition.

Although many ideas were put forward to resolve
the inconsistency between experimental findings and
theoretical predictions (see extensive discussion in [2]),
the subject still remains quite problematic. In [3], it
was proven that the metallic state should not be con-
sidered as unusual for 2D disordered systems. At the
same time, a clear scenario capable of explaining MIT
observed in two dimensions was not proposed.

In this paper, the method of [3] previously devel-
oped for exactly two-dimensional systems is extended
to realistic 3D systems of waveguide type in order to
take into account the finite extent of electron wave
functions in the direction normal to the interface. By
monitoring the width of the near-surface potential well
which shapes the electronic waveguide one can change
the number of conducting channels and, consequently,
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two-dimensional density of current carriers. The last
channel closing is identified with a MIT, which is thus
recognized as a true quantum phase transition.

2. Reduction to one-dimensional problem

By simulating the near-surface potential well in the
form of a flattened electronic waveguide, the equation
for one-particle retarded 3D propagator G(r, r′) can
be reduced to an infinite set of one-coordinate dif-
ferential equations for its mode Fourier-components
G��′ (x, x′). In the case of a rectangular waveguide
cross-section the equations read�

∂2

∂x2
+ κ2

� + i0 − U��(x)

�
G��′ (x,x′)

−
�
� �=�

U�� (x)G��′(x, x′) = δ��′δ(x − x′) . (1)

Here, � = (n,m) is the two-component vectorial mode
index (n,m ∈ ℵ), x is the lengthwise coordinate in
the waveguide, x ∈ (−L/2, L/2), U��(x) are the mode
matrix elements of the random potential V (r),

U��(x) =

�
S

dr⊥�r⊥;��V (r)�r⊥;�� , (2)

the parameter

κ2
� = k2

F − (πn/W )2 − (πm/H)2 , (3)
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with kF being the Fermi wavenumber, has the mean-
ing of a longitudinal energy of the mode �. In Eq. (2),
integration is carried out within the bounds of the
waveguide cross-section area S = WH, W and H
are its width and height, respectively. The potential
V (r) is specified by the zero mean value, 〈V (r)〉 = 0,
and the binary correlation function 〈V (r)V (r′)〉 =
QW(x − x′)δ(r⊥ − r′⊥).

From (1), all the inter-mode propagators G��(x, x′),
with � �= �, can be expressed, by means of a linear
operation, in terms of the corresponding intra-mode
propagators G��(x, x′). This allows one to derive the
exact one-dimensional closed equations for the diago-
nal mode Green functions only,�

∂2

∂x2
+ κ2

� + i0 − U��(x) − T̂�
�

G��(x, x′)

= δ(x − x′) . (4)

Here
T̂� = ��Û(1 − R̂)−1

�� , (5)

is the effective non-local potential (T -matrix) which
exactly takes into account all inter-mode scattering
events. The operators Û and R̂ are specified in mixed
coordinate-mode space (x,�) by matrix elements
�x,��Û�x′,�� = U��(x)δ(x − x′) and �x,��R̂�x′,�� =

G
(V )
� (x, x′)U��(x′), �� is the projection operator into

the mode �. The function G
(V )
� (x, x′) is the solution

of equation (1) with only intra-mode potentials kept.
The equation (4) spectrum can be effectively ana-

lyzed in the weak scattering limit corresponding to the
inequalities kF , rc � �, where rc is the potential V (r)
correlation radius, � is the electron mean free path. The
inter-mode scattering accounted for by T -matrix (5)
leads to the mode state � dephasing, whose rate equals

1

τ
(ϕ)
�

=
Q
4S

�
� �=�

′ 1

κ�

��W(κ� − κ� ) + �W(κ� + κ� )
�

.

(6)
The prime at the sum index indicates the summation
over open channels only, �W(q) is the Fourier transform
of W(x). It follows from Eq. (6) that quenched disorder
can cause the dephasing of the electron states properly
classified subject to the system boundedness, but this
is the case exclusively in the conductors with more than
one extended mode.

3. The conductance

With the solution of Eq. (4), the average conduc-
tance obtained from the linear response theory reads�
g(L)

�
=
�
�

′ l(ϕ)
�

L

	
1 − l

(ϕ)
�

L
exp



− L

l
(ϕ)
�

�
sinh

L

l
(ϕ)
�

�
.

(7)

Here l
(ϕ)
� = 2κ�τ

(ϕ)
� is the mode � dephasing length.

The conductance (7) depends crucially on the num-
ber of open channels. It can be seen from Eq. (3) that
this number can be varied by changing either of waveg-
uide transverse dimensions, e.g., the thickness H. By
strengthening the applied depletion voltage, the num-
ber of extended modes can be gradually reduced, so
that only evanescent modes, with κ2

� < 0, remain even-
tually in the conductor. These modes are strongly lo-
calized at length scales comparable with de Broglie
wavelength k−1

F , so that in this case the electron sys-
tem behaves like an insulator.

Fig. 1. The dimensionless conductance dependence on

the waveguide thickness H at a fixed value of width

(kF W/π = 20.5). The curve I corresponds to λ = L/� = 0,

II — λ = 0, 5, III — λ = 5.

In Fig. 1, the dependence of the conductance (7) on
the parameter kF H is depicted for different disorder
strengths. In the ballistic limit, L/� → 0, the conduc-
tance exhibits clear stepwise behaviour with the jump
value exactly equal to the conductance quantum e2/π�.
As the degree of disorder grows, the height of the steps
is lowered, their shape is smoothed out, and the con-
ductance approaches the well-known Drude value.

The transition of a planar (quasi-2D) electron sys-
tem to its 0-mode “dielectric” state, which corresponds
to the leftmost forepart of the curves in Fig. 1, takes
place almost independently of the degree of disorder.
This implies that the above described MIT is caused
not by the Anderson localization of carrier states or by
Coulomb interaction of carriers, but rather it is a true
quantum phase transition related to size quantization.
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