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Abstract

We have measured the electron-phonon scattering time, τep, in disordered metals at liquid-helium temperatures,
using weak-localization method. The temperature and disorder dependence of τep is determined for AgPd and AuPd
thick films, and V100−xAlx alloys. In all three cases, we find an anomalous temperature and disorder dependence
of τ−1

ep ∝ T 2�, where � is the electron elastic mean free path. This temperature and disorder behavior cannot be
explained in terms of current theoretical concepts for the electron-phonon interaction in impure conductors. Current
theory predicts a form of either τ−1

ep ∝ T 4� or τ−1
ep ∝ T 2�−1 in the dirty limit, depending on the nature of the defects.
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The electron-phonon (e-ph) interaction in impure
conductors is a long-standing problem in condensed-
matter physics. The e-ph scattering time, τep, in the
presence of multiple elastic impurity scattering has
been calculated by several authors for over decades
[1–3], but our understanding of the temperature and
electron elastic mean free path, �, dependences of τep

is still incomplete. Theoretically and experimentally,
different temperature and disorder dependences of τep

have been reported in the literature [4,5]. The situa-
tion becomes even less clear in the case of reduced-
dimensional systems where the effect of phonon con-
finement may further complicate the problem. Infor-
mation about the temperature and mean-free-path
dependences of τ−1

ep will undoubtedly shed light on our
understanding of the microscopic interactions of the
e-ph process.

In addition to the electron heating measurements [6],
systematic information about τep(T, �) can be experi-
mentally obtained from weak-localization (WL) stud-
ies, using carefully selected, tailor-made samples cov-
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ering a wide range of material characteristics [4,5]. In
three dimensions, the total electron dephasing rate that
governs the WL effects is given by [7,8]

1

τφ(T, �)
=

1

τ0
φ

+
1

τep
=

1

τ0
φ(�)

+ Aep(�)T
p , (1)

where τ0
φ = τφ(T → 0) depends very weakly on tem-

perature, if at all, and is called the saturated dephas-
ing time [5]. The second term in Eq. (1) is due to the
e-ph scattering, where Aep characterizes the strength
of e-ph coupling, and p is an effective exponent of tem-
perature.

In order to improve our understanding of the e-ph
interaction in disordered metals, we have in this work
measured τep in a few series of RF sputtered AgPd,
and DC sputtered AuPd thick films, and arc-melted
V100−xAlx alloys. Our samples are polycrystalline, and
they are three-dimensional with regard to the electron
dephasing length

√
Dτφ, where D is the diffusion con-

stant, that determines the system dimensionality in the
WL problem. For each sample, low-field magnetoresis-
tivities between 0.5 and 20 K are measured and com-
pared with three-dimensional WL theoretical predic-
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tions [7] to extract the value of τφ. The extracted τφ is
then least-squares fitted to Eq. (1), yielding the values
of Aep and p.

We first discuss our experimental temperature de-
pendence of τ−1

ep . For all samples, the value of p that
we obtained in the above manner is equal or close to 2,
suggesting that the experimental e-ph scattering rate
is best described with an essentially quadratic temper-
ature dependence (not shown). A quadratic tempera-
ture dependence of τ−1

ep in disordered metals has re-
mained a lasting puzzle for over years [5]. Recently,
anew theoretical efforts aiming at resolving this puzzle
have been proposed in Refs. [9] and [10].

In addition to the temperature dependence, the � de-
pendence of τ−1

ep is indispensable in gaining a full ex-
planation of the e-ph interaction in impure conductors.
In each series of samples studied in this work, we have
“tuned” the amount of disorder (i.e., the residual re-
sistivity ρ0 = ρ(10K)) by progressively adjusting the
fabrication conditions. In the cases of AgPd and AuPd
thick films, the value of ρ0 was tuned by varying the
deposition rate; while in the case of V100−xAlx alloys,
the value of ρ0 was tuned by varying the Al concen-
tration x from 18 to 26. Within this range of x, the
V100−xAlx alloys remain single-phased. Our values of
ρ0 are 70−180, 70−230, and 140−210 µΩ cm for AgPd,
AuPd, and V100−xAlx, respectively.

What is most striking is that, with the values of
Aep extracted for each series of samples covering a suf-
ficiently wide range of ρ0, we observe a totally un-
expected linear dependence of τep on disorder, i.e.,
τep ∝ ρ0. We find that such a linearity holds for all
the AgPd, and AuPd thick films, and V100−xAlx al-
loys studied. Figure 1 shows a representative plot of
the extracted value of Aep as a function of the recipro-
cal of ρ0 for a series of 4000−5000 Å thick AgPd films.
This figure clearly reveals that Aep ∝ ρ−1

0 , i.e., τ−1
ep ∝

�. Taken together, the observation of Fig. 1 with the
above-mentioned T2 temperature dependence, our re-
sult demonstrates an anomalous τ−1

ep ∝ T 2� behavior.
For a given resistivity of ρ0 = 150 µΩ cm, we obtain
τep(1K) ≈ 1.2× 10−8, 2.5× 10−10, and 1.3× 10−9 s in
AgPd, AuPd, and V100−xAlx, respectively.

According to the “orthodox” e-ph interaction theory
for disordered metals [1–3], that assumes a coherent
motion of the impurity atoms with the deformed lattice
atoms at low temperatures, one should expect a τ−1

ep ∝
T 4� dependence. Recently, it was speculated that, in
real metals containing heavy (light) impurities, the im-
purity atoms might not move in phase with the lattice
atoms [11]. The first calculations in consideration of
this effect have been done in Ref. [9]. It was found that
even a small amount of “static” potential scatterers
drastically changes the e-ph-impurity interference, and
the relaxation rate is proportional to T2L−1, where L
is the electron mean free path with respect to the static
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Fig. 1. Variation of Aep with ρ−1
0 for AgPd thick films. The

straight line drawn through the data is a guide to the eye.

impurities (L � �). Experimentally, a T4 dependence
has been observed very recently, in disordered Hf and
Ti thin films [12]. However, to the best of the authors’
knowledge, the combined T4� law has never been found
in any real conductors thus far. On the other hand, a
distinct τ−1

ep ∝ T 2�−1 dependence has been observed
in Ti100−xAlx and Ti100−xSnx alloys [13]. Previously, a
T 2� dependence has been observed in two-dimensional
Nb thin films [14].

In conclusion, we have found extensive evidence of
a T2� temperature and disorder dependence of τ−1

ep in
AgPd, and AuPd thick films, and V100−xAlx alloys.
This T 2� behavior is unexpected, even qualitatively, in
terms of the current theoretical concepts for the e-ph
interaction in impure conductors.
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