

Anisotropic magnetic behavior of $\text{GdBa}_2\text{Cu}_3\text{O}_{6+y}$ single crystals

Vladimir N. Narozhnyi^{a, b,1}, Dieter Eckert^a, Günter Fuchs^a, Vladimir Nekvasil^c,
Karl-Hartmut Müller^a

^aLeibniz-Institut für Festkörper- und Werkstoffforschung Dresden, PO Box 270116, D-01171 Dresden, Germany

^bInstitute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow Region, 142190, Russia

^cInstitute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16253 Praha 6, Czech Republic

Abstract

Magnetic properties of high-quality Al-free nonsuperconducting $\text{GdBa}_2\text{Cu}_3\text{O}_{6+y}$ single crystals grown by flux method have been studied. The magnetic anisotropy below the Néel temperature $T_N \approx 2.3$ K corresponds to the direction of Gd^{3+} magnetic moments along the tetragonal c -axis. At $T < T_N$ clear indications of spin-flop transitions for $H \parallel c$ have been observed on magnetization curves at $H_{sf} \approx 10$ kOe. Magnetic phase diagrams have been obtained for $H \parallel c$ as well as for $H \perp c$. A pronounced anisotropy in the magnetic susceptibility (unexpected for Gd-based compounds) has been found above T_N .

Key words: $\text{GdBa}_2\text{Cu}_3\text{O}_{6+y}$; magnetic anisotropy; spin-flop transition; single crystal

Collinear antiferromagnetic ordering was found for $\text{GdBa}_2\text{Cu}_3\text{O}_{6+y}$ (Gd1236) with the Gd magnetic moments directed along the c -axis [1,2]. So far magnetism in Gd1236 single crystals were studied on Al-containing samples [3] or by indirect methods (e.g., NMR [4]). However, the reported results are controversial.

In this work we report on the magnetic properties of high quality Al-free nonsuperconducting Gd1236 single crystals grown in Pt crucibles by the flux method [5]. Atomic absorption spectroscopy has shown that the Pt contamination does not exceed $3 \cdot 10^{-3}$ at. % [6]. To reduce the oxygen concentration the samples were annealed at $T = 600$ C under high vacuum during 4 days. The magnetization M was measured by SQUID magnetometer. The data are compared with the results obtained earlier for $\text{PrBa}_2\text{Cu}_3\text{O}_{7-y}$ (Pr123) [7] as well as for the Gd-sublattice of mixed $\text{Gd}_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_{7-y}$ [(Gd-Pr)123] single crystals [6].

The temperature dependence of susceptibility $\chi = M/H$, shown in Fig. 1 for two directions of the mag-

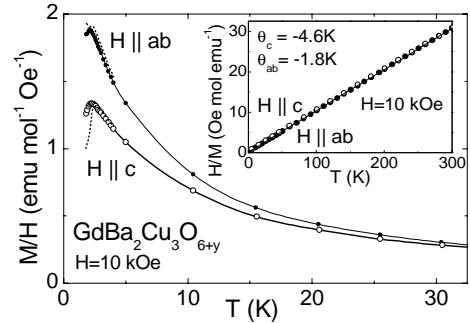


Fig. 1. Temperature dependence of the magnetic susceptibility (determined as M/H at $H = 10$ kOe) of a $\text{GdBa}_2\text{Cu}_3\text{O}_{6+y}$ single crystal for $H \parallel c$ (open circles) and $H \perp c$ (full circles). Dotted lines - the data for $H = 1$ kOe. Inset: temperature dependence of inverse magnetic susceptibility H/M . The line shows the best fit to the Curie-Weiss law for $H \perp c$.

netic field H , has a maximum at $T \approx T_N$. The position of the maximum is field dependent. The anomaly is more pronounced for $H \parallel c$ (at least for small fields), which corresponds to the c -axis direction of the Gd^{3+} magnetic moments (in accord with neutron diffraction and Mössbauer spectrometry [1,2]). The maximum in

¹ Corresponding author. Present address: Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, PO Box 270116, D-01171 Dresden, Germany. E-mail: narozh@ifw-dresden.de

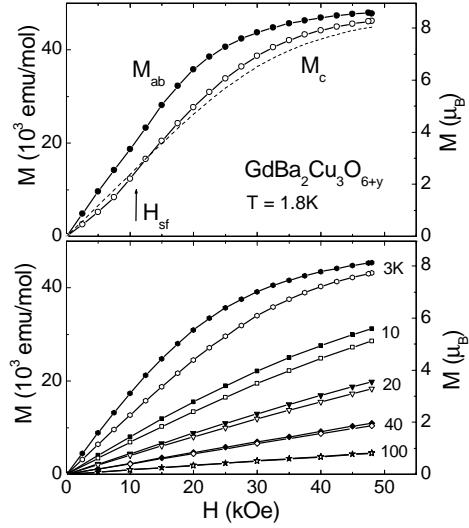


Fig. 2. Magnetization of the $\text{GdBa}_2\text{Cu}_3\text{O}_{6+y}$ single crystal for $H \parallel c$ (open symbols) and $H \perp c$ (full symbols). Full lines are guides for eye. The dashed line shows the data for $H \parallel c$ at $T = 2.4$ K which is slightly above T_N .

$\chi(T)$ disappears for $H \geq 15$ kOe at $T \geq 1.8$ K.

The $\chi^{-1}(T)$ curves can be well fitted to the Curie-Weiss law $\chi^{-1}(T) = (T - \theta)/C$ for $5 \leq T \leq 300$ K. The values of θ and the effective magnetic moment m_{eff} (determined from the Curie constants C) are -4.6 K and $8.90\text{ }m_{\text{B}}$ and -1.8 K and $8.88\text{ }m_{\text{B}}$ for $H \parallel c$ and $H \perp c$, respectively. m_{eff}^c and m_{eff}^{ab} are very close to each other as expected for the spin-only magnetic moment of Gd. The values of m_{eff} are little higher than the value of the free Gd^{3+} ion. This difference may be connected with some error in determination of the small mass of the sample ($m = 0.50$ mg; the accuracy of mass determination in this case is about 10%).

The anisotropy in χ in paramagnetic state is clearly seen in this figure. Phenomenologically the observed anisotropy can be connected with the difference between θ_c and θ_{ab} . (From the fit the accuracy in θ determination is better than 0.1 K.) It is found that $|\theta_c| > |\theta_{ab}|$. The sign of magnetic anisotropy for Gd1236 is the opposite to the observed for Pr123 [6,7]. The different signs of magnetic anisotropy for Gd- and Pr-sublattices explain the crossover of magnetic anisotropy reported for (Gd-Pr)123 single crystals [6].

$M(H)$ curves clearly show an anisotropy below as well as above T_N , see Fig. 2. At lowest T there is a clear tendency for isotropization in high fields. $M_{ab} > M_c$ is in accord with our data obtained earlier from subtraction of (Y-Pr)123 data from (Gd-Pr)123 results [6]. The general agreement with these previously indirectly obtained results on the magnetization of the Gd-sublattice is fair. Even the values and the anisotropy of θ correspond well to the directly measured for Gd1236.

Below T_N , a distinct indication of a spin-flop tran-

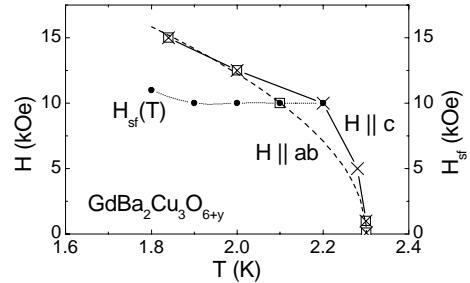


Fig. 3. Magnetic phase diagram of $\text{GdBa}_2\text{Cu}_3\text{O}_{6+y}$ for $H \parallel c$ (crosses and full line) and $H \perp c$ (open squares and dashed line). The temperature dependence of the spin-flop field is shown by the dotted line and full circles.

sition can be seen for $H \parallel c$, see Fig. 2. The spin-flop field H_{sf} was determined as an inflection point of the $M(H)$ dependence at $T < T_N$. H_{sf} is practically temperature independent in the studied temperature interval, see Fig. 3. As expected, the spin-flop transition disappears above T_N . No anomaly has been detected for $H \perp c$ at all T .

A magnetic phase diagram is constructed from the field dependence of T_N , determined for two directions of H (see Fig. 3). The field dependence of T_N for $H \perp c$ is described by a quadratic dependence similar to that observed by us earlier for Pr-1237 [7]. Below H_{sf} the $T_N(H)$ dependence for $H \parallel c$ is weaker than for $H \perp c$. At the same time above H_{sf} the $T_N(H)$ dependencies are close for both directions of H .

The pronounced magnetic anisotropy found for Gd1236 may be connected with several mechanisms including: (i) dipole-dipole interaction of the Gd ions; (ii) interaction between Gd and Cu sublattices; (iii) anisotropic exchange interaction; (iv) crystal-field effects on the excited Gd^{3+} states. Further investigations are necessary to clarify the situation.

Acknowledgements

This work was supported by DFG (grant MU1015/4-2), RFBR (grant 01-02-04002) and GA CR (grant 202/00/1602).

References

- [1] H. A. Mook *et al.*, Phys. Rev. B **38** (1988) 12008.
- [2] C. Meyer *et al.*, J. Phys. F: Met. Phys. **17** (1987) L345.
- [3] V. P. Djakonov *et al.*, Physica C **178** (1991) 221.
- [4] K. Nehrke and M.W. Pieper, Phys. Rev. B **51** (1995) 12618.
- [5] V. N. Narozhnyi *et al.*, JMMM **157/158** (1996) 675.
- [6] V. N. Narozhnyi *et al.*, Physica B **284-288** (2000) 1047.
- [7] V. N. Narozhnyi *et al.*, Physica C **312** (1999) 233.