
Magnetization and dimerization profiles of open spin ladders

E. Orignac a,1, P. Lecheminant b,
aLPTENS, CNRS-UMR8549, 24 Rue Lhomond, 75231 Paris Cedex 05, France
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Abstract

The physical properties of the edge states of the open two-leg generalized spin ladder are investigated by means of
the bosonization approach. Depending on interchain couplings, two different types of Haldane gapped phases are
obtained, one with spin 1/2 edge states, the other one without edge states. We determine the magnetization and
dimerization profiles for both phases. Further applications to the spin-1 chain are discussed. Finally, we address
the case of interchain interactions breaking SU(2) spin symmetry.
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Using a non-linear sigma model with topological
term description, Haldane showed in 1983 that spin
chains with integer spin have gapped excitations above
their ground state, whereas spin chains with half-odd
integer spins would remain gapless[1]. Using the same
non-linear sigma model formulation, it was later con-
jectured that a semi-infinite spin S chain has spin S/2
(respectively S/2 − 1/4) excitations near the edge for
integer spins (respectively half-odd integer) S [2]. A
simple explanation of the existence of free spin-1/2
moments at the ends a broken spin-1 chain can be
obtained from the valence bond solid model[3] which
provides an intuitive description of the ground state of
the spin-1 chain. These spin-1/2 edge states have been
observed in the Haldane-gap spin-1 compound NENP
doped with nonmagnetic and magnetic impurities[4].

There exists a strong analogy between spin ladders
and spin-1 chains[5]. In the present paper, we discuss
edge states of the semi-infinite two-leg spin-1/2 ladder
and the semi-infinite spin-1 chain. The Hamiltonian of
the semi-infinite generalized two leg ladder[6] that we
shall consider reads as follows:
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H = J‖
∑

i=1,∞
p=1,2

Si,p · Si+1,p +
∑

i=1,∞
J⊥Si,1 · Si,2

+ J ′
⊥Si,1 · Si+1,2 + J ′′

⊥Si,2 · Si+1,1. (1)

In a previous publication[7], we have discussed the
fermionization of the above model (1) with J′

⊥ = J ′′
⊥ =

0. Using a similar approach, keeping only the most rel-
evant terms, the continuum description of Hamiltonian
(1) is given by H = Ht + Hs with:

Ht = − iv

2

∞∫
0

dx

3∑
a=1

(ξa
R∂xξa

R − ξa
L∂xξa

L)

− imt

∞∫
0

dx

3∑
a=1

ξa
Rξa

L,

Hs = − iv

2

∞∫
0

dx
(
ξ0

R∂xξ0
R − ξ0

L∂xξ0
L

)

− ims

∞∫
0

dx ξ0
Rξ0

L, (2)

where v = πJ‖a/2, mt = −(J⊥−J ′
⊥−J ′′

⊥)/(2π), ms =
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3(J⊥ − J ′
⊥ − J ′′

⊥)/(2π), with the boundary conditions
ξa

R(0) = ξa
L(0), a = 0, . . . , 3. For J ′

⊥ + J ′′
⊥ > J⊥, spin-

1/2 edge states are present at the extremity of the chain
as a result of the boundary conditions. Using a map-
ping on non-critical Ising models[7], we have found the
following staggered magnetization profiles induced by
the presence of the edge state:

(−)x/a〈(S1 + S2)
a(x)〉 ∼ e−mtx/v(x � v/mt),

(−)x/a〈(S1 + S2)
a(x)〉 ∼ x1/2(x � v/mt). (3)

For J⊥ > J ′
⊥ + J ′′

⊥, edge states are absent, and there
is no induced staggered magnetization. This is another
indication that depending on the sign of J⊥ − (J ′

⊥ +
J ′′
⊥) one has two different types of spin liquid ground

state[6]. A schematic view of these spin liquid ground
state is shown on figure 1 for J⊥, J ′

⊥ � J‖.

J⊥ J’⊥

J⊥ J’⊥>

J⊥ J’⊥<

J//

Fig. 1. The two different spin liquid states in the general-

ized spin ladder for J′′
⊥ = 0. In the first type of spin liquid

state(J⊥ > J′
⊥) singlets are vertical and edge states are ab-

sent, but in the second type of spin liquid singlets are diagonal

and edge states are present.

For J⊥ = J ′
⊥ + J ′′

⊥ one must take into account
subleading marginally relevant terms. The bosonized
Hamiltonian is then similar to the one of the open two-
leg zig-zag ladder defined by J⊥ = J ′

⊥ and J ′′
⊥ = 0[8].

There are strong indications [9] that in such cases
edge states are absent. The case of the spin-1 chain
is obtained from the spin ladder [10,11] by making
ms = −∞, mt > 0. Edge states are present, and the
magnetization profile is then:

(−)x/a〈Sa(x)〉 ∼ e−mtx/v(x � v/mt),

(−)x/a〈Sa(x)〉 ∼ x5/8(x � v/mt). (4)

A staggered dimerization is also induced by the pres-
ence of the boundary. We obtain in the case of the lad-
der for J ′

⊥ +J ′′
⊥ > J⊥ and the spin-1 chain a staggered

dimerization profile:

(−)i

〈∑
p

Si,p · Si+1,p

〉
∼ e−3mtia/v(ia � v/mt),

(−)i

〈∑
p

Si,p · Si+1,p

〉
∼ i−β(ia � v/mt), (5)

with β = 1/2 for the ladder and β = 3/8 for the spin-1
chain. For the ladder with J′

⊥ + J ′′
⊥ < J⊥, we obtain

the same profile, with 3mt → ms. Now, we turn to
the case of an anisotropic ladder or spin-1 chain. The
Hamiltonian Ht reads:

Ht = − iv

2

∞∫
0

dx

3∑
a=1

(ξa
R∂xξa

R − ξa
L∂xξa

L)

− i

∞∫
0

dx

3∑
a=1

ma ξa
Rξa

L. (6)

For ma > 0, spin 1/2 edge states are present. However,
they now have effective g factors such that 2g−1

c =√
ma/mb +

√
mb/ma with a, b �= c. For the spin-1

chain, the staggered magnetization is now:

(−)x/a〈Sa(x)〉 ∼ e−max/v (7)

and the staggered dimerization decays as e−(m1+m2+m3)x/a

for long distances.
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