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Abstract

Positrons embedded in metals annihilate predominantly with conduction electrons. The annihilation rate reduces
with decreasing density for the whole range of metallic densities. Controversial suggestions have been made on the
annihilation rates at very low electron gas densities. We calculate the effective screened interaction between the
positron impurity and electrons within a simplified jellium model where the electrons are treated as bosonic particles
and show that the electrons attracted to the positron can form a bound cluster. The resonance states of the effective
interaction are analyzed by calculating the scattering phase-shifts. We find that the maximum of the phase-shift
at zero energy approaches to π when rs ≈ 14. According to the Levinson’s theorem this indicates a bound state.
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1. Introduction

The positron annihilation into metals and semicon-
ductors has been studied a long period of time. Micro-
scopic many-body theories[1–3] give reasonable results
in metallic densities where the usual electron gas den-
sity parameter 2 < rs < 6. At lower densities, however,
these methods fail to converge because the electron
density at the positron position becomes very large.
Only the zero density limit where the positronium ion
(p−) is formed can be treated with confidence. In this
work we study the possibility of a bound state at fi-
nite densities when rs > 10 by calculating the effective
screened positron-electron interaction. Our method is
based on the microscopic variational approach with
the Jastrow wave function, which is well described in
the literature[4,5]. From the Levinson’s theorem[6] we
know that if the s-wave phase shift at zero energy is
π, then the potential has a bound state whereas in the
case of no bound states it goes linearly to zero in the
long wavelength limit.
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2. Results

Our variational method consists of a positron impu-
rity embedded in the electron gas and the ionic back-
ground is taken into account within the jellium model.
We minimize the chemical potential of the impurity
with respect to the radial distribution function gI(r),
which describes the distribution of electrons around
the positron. The whole system is neutralized by the
jellium charge. We want to isolate the screening of the
charge from the fermionic effects and that is why we
treat electrons as bosons. As a result we get the Euler
equation for gI (r),

− h̄2

2mred
∇2

√
gI (r) + Veff(r)

√
gI(r) = 0 (1)

where mred = memp/(me + mp) is the reduced mass
with electron and positron masses and Veff(r) =
−e2/r + wind(r) is the effective interaction. The first
term in it is the attractive Coulomb interaction and
the second term the interaction induced by the many-
body effects. In the HNC-approximation the Fourier
transform of wind(r) can be written in the form
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Fig. 1. The effective positron-electron potential for the

rS-values indicated in the figure. For comparison we show the

bare Coulomb potential (lowest line).
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The static structure function SI(k) is the Fourier trans-
form of gI(r) − 1 and S(k) is the structure function
of the electron gas. Eq. (1) satisfies the perfect screen-
ing condition, which requires that SI(0) = 1. The Eu-
ler equation (1) is a non-linear differential equation
and is solved iteratively with the boundary condition
gI(∞) = 1. After the convergence is reached the solu-
tion determines both gI(r) and Veff(r). The radial dis-
tribution function is strongly peaked around the im-
purity and the height of the peak at r = 0 can be mea-
sured by the positron annihilation rate measurements.

Our main interest in this work is in the effective in-
teraction Veff(r). Its behaviour for several rs values is
shown in Fig. 1. It is a short-ranged function, because of
the perfect screening condition, additionally the many-
body effects over-screen the Coulomb attraction cre-
ating a barrier at distances where electrons cluster.
These potentials can not have bound states because
of the fixed boundary conditions. Yet, we can calcu-
late s-wave scattering and within that approximation
the total cross section. As shown the attraction of the
potential at short distances increases with decreasing
density and due to the potential barrier a resonance
state is formed. The energy of the resonance state ap-
proaches to zero as shown in Fig. 2 where we plot the
total cross section for several rs-values in the logarith-
mic scale. The approaching bound state can also be
seen from the maximum of the s-wave scattering phase
shifts shown in Fig. 3. According to Levinson’s the-
orem if the phase shift of the resonance state in the
zero energy limit is equal to π then the system has one
bound state. The exact rs-value where the bound state
is formed is difficult to reach because of the iteration
procedure is allowed to converge only for non-bound
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Fig. 2. The total cross section of the s-wave scattering for the

same rs-values as in Fig. 1. All curves go to zero at E = 0.
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Fig. 3. The maximum of the s-wave phase shift.

systems and that is why the phase shift is bending near
the critical value.
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