Effects of disorder on conductance through small interacting systems
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Abstract

We study the effects of disorders on the transport through small interacting systems based on a two-dimensional
Hubbard cluster of finite size connected to two noninteracting leads. This system can be regarded as a model for the
superlattice of quantum dots or atomic network of the nanometer size. We calculate the conductance at T = 0 using
the order U? self-energy in an electron-hole symmetric case. The results show that the conductance is sensitive to
the randomness when the resonance states are situated near the Fermi energy.
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Quantum transport through small interacting sys-
tems, such as quantum dots and wires, has been a sub-
ject of current interest. For these systems theoretical
approaches, which are able to treat correctly the inter-
action and interference effects, are necessary for sys-
tematic investigations. In this report, using the pertur-
bation method described in [1], we study effects of dis-
orders on the conductance of the interacting systems.

We consider a system consisting of three regions; a
finite interacting region at the center (C), and two non-
interacting reservoirs on the left (L) and right (R). The
total Hamiltonian is, Hiot = H° + HEY, with H® =
Hr +Hr +HE + Humix. Here Hr, (Hr) is a Hamiltonian
for the left (right) lead. The central region is described
by a Hubbard model on a square lattice of N x M
(= Nc) sites: H2 = — Yojjrec t?j,c;(,cj,a, and HE' =
Uz:;.\r:c1 [nj1 s — (nj1 + njp)/2] in the standard no-
tation. In this report we consider the electron-hole sym-
metric case, and examine effects of the off-diagonal
disorder described the nearest-neighbor transfer t]Qj,.
The central region and two leads are connected via M
channels described by Hmix [1]. We assume that the
two coupling are equal and described by a parameter
I’ = wpv?, where v is the mixing matrix element and
p is the density of states of the isolated leads. The sys-
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tem may be regarded as a model for the superlattice of
quantum dots [2].

The zero-temperature conductance of this system is
determined by the value of the single-particle Green’s
function at the Fermi energy w = 0 [1]. The Dyson
equation is written in a N¢ X N¢ matrix form

(0} ={d"e} -3@) 1)
{ao(z)}_l =21-— 'ﬁ% — \A)mix(z) . (2)

Here @O = {G?j,} with j5° € C is the unperturbed
Green’s function corresponding to H°, and s = {Z;;/}
is the self-energy due to the interaction H&'. We as-
sume the hard-wall boundary condition for ’}A{% =
{t?j,} along the direction perpendicular to the cur-
rent. The size along this direction is M. The mixing
self-energy Vmix is non-zero only for the two subspaces
corresponding to the interfaces, for each of which the
partitioned matrix is given by —iI'l for the retarded
function z = w + 0" with 1 being the unit matrix of
size M. We calculate the value of G at w = 0 using eq.
(1) with the order U? self-energy 3(0) as in [1]. In the
present study, we take the nearest-neighbor transfer
to be random variables between 0.9 < t?j,/t < 1.1,
and take the strength of the mixing to be I'/t = 0.75,
where t is the transfer for the regular cluster.
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We show in the following the results obtained for the
system of the size M = 4 and N = 4. In Fig. 1 the
conductance for 29 different samples of random con-
figurations (dashed lines) and that of the regular clus-
ter without the disorder (solid line) are plotted vs U.
The conductance for each of these samples decreases
with increasing U. Due to the randomness, the value
of the conductance fluctuates around that of the regu-
lar cluster. To see these features of the results from a
different viewpoint, we evaluate the eigenvalues of an
effective Hamiltonian 7123 = ’}Tt% + 33(0). The eigen-
values can be related to the peak position of the reso-
nance states [1], and among Nc eigenstates those near
the Fermi energy w = 0 contribute to the transport.
In Fig. 2 the eigenstates near w = 0 are compared to
those for the regular cluster without disorder (dashed
lines), where the sample #1 (#2) is a typical example,
the conductance of which is larger (smaller) than that
of the regular cluster. Note that the eigenvalues are
symmetric with respect to w = 0 due to the electron-
hole symmetry, and thus the four eigenvalues shown in
each figure are classified into two pairs. In both of the
samples the pair situated closer to the Fermi energy
keep staying near w = 0 for U/(2nt) < 2.0, while the
other pair leave away from the Fermi energy as U in-
creases. Therefore, for the results of the conductance
shown in Fig. 1 the contribute of the pair at the near
side is about 2 (2¢?/h) and almost independent of the
value of the onsite repulsion for small U/(2t). Thus,
the other pair at the far side mainly determine the U
dependence of the conductance of the cluster examined
here.

This feature can be understood from the electronic
structure of the regular cluster for U = 0, where the
system has a well-defined subband structure. In this
limit the pair at the far side correspond to the resonant
states in the lowest and highest subbands, which are
situated near the edge of the subbands. Since in each
of these two subbands the Fermi energy is also close
to the band edge, the position of the resonance states
relative to the Fermi energy becomes sensitive to the
disorder and interaction. The contributions of the con-
ducting subbands at the marginal positions play an im-
portant role for the fluctuation of the current through
the systems with a small number of conducting chan-
nels. Details of the formulation, numerical results and
discussions will be presented elsewhere.
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Fig. 1. Conductance of a Hubbard cluster of 4 X 4 at half-filling
with the off-diagonal randomness 0.9 < t’/t < 1.1. Disordered
samples (29 dashed lines), and regular cluster (solid line).
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Fig. 2. Eigenvalues of the effective Hamiltonian 5 near the
Fermi energy w = 0, which are related to the resonance states
contributing to the current.
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