

Magnetic Behavior in Nonmagnetic Atom Disorder System Ce_2CuSi_3

D.X.Li^{a,1}, Y.Shiokawa^a, S.Nimori^b, Y.Haga^c, E.Yamamoto^c, T.D.Matsuda^c, Y.Onuki^c

^a*Institute for Materials Research, Tohoku University, Oarai, Ibaraki, 311-1313 Japan*

^b*Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba, 305-0003 Japan*

^c*Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki, 319-1195 Japan*

Abstract

Results of magnetic susceptibility, specific heat and electrical resistivity measurements on a polycrystalline Ce_2CuSi_3 sample are reported. This compound shows the spin-glass behavior below $T_f=2.7$ K with extended short-range magnetic order. The spin glass state is considered to originate from the randomly distributed RKKY-type exchange interactions due to the disordering of Cu and Si atoms on the crystallographic sites.

Key words: Ce_2CuSi_3 ; susceptibility; specific heat; spin glass

Nonmagnetic atom disorder compounds $R_2\text{CuSi}_3$ (R = rare earth element), which crystallize in a hexagonal AlB_2 -type structure with random distribution of Cu and Si atoms on the B positions in AlB_2 , is a very interesting family among the ternary intermetallic compounds with composition 2:1:3. Among them complex magnetic orderings exhibit in Nd_2CuSi_3 [1] and Pr_2CuSi_3 [2] with antiferromagnetic (AF) transition at $T_N=5$ K and ferromagnetic (F) transition at $T_C=10$ K, respectively. At much lower temperatures, both them show spin glass (SG) behavior. For Ce_2CuSi_3 , there is a peak in the low field dc susceptibility curve near 2.1 K and the temperature dependence of specific heat measured down to 4.5 K shows a mass enhancement behavior [3]. These unusual features motivated us to investigate $R_2\text{CuSi}_3$ compounds systematically. In this paper, we present the results of magnetic susceptibility, specific heat and electrical resistivity measurements on a well-annealed polycrystalline Ce_2CuSi_3 sample.

The sample was prepared in an arc furnace and annealed at 950 °C for 20 days. X-ray measurement showed only a single phase with AlB_2 -type structure (space group $P6/mmm$). The lattice constants are

$a=4.058(2)$ Å and $c=4.288(2)$ Å. The ac susceptibility χ_{ac} and dc magnetization $M(T)$ were measured between 1.8 and 300 K using a SQUID magnetometer. Adiabatic heat pulse method and four-terminal dc method were used for specific heat $C(T)$ and electrical resistivity $\rho(T)$ measurements, respectively.

Figure 1 shows the temperature dependence of the real component χ_{ac}' of the ac susceptibility of Ce_2CuSi_3 between 2 and 4 K at the frequency range $0.1 \leq \nu \leq 1000$ Hz. Typical SG behaviors are observed: χ_{ac}' exhibits a pronounced maximum around $T_f(v)$, and an upward-shift of $T_f(v)$ with increasing v is clearly observed. The initial frequency shift δT_f was calculated as $\delta T_f = \Delta T_f / (T_f \Delta \log \nu) = 0.013$. This value is comparable to those reported for typical metallic SG systems, for example, 0.010 for AuFe [4], 0.025 for URh_2Ge_2 [5] and 0.008-0.022 for some other 2:1:3 SG systems [6-9]. The formation of SG states in Ce_2CuSi_3 is also confirmed by dc susceptibility $\chi (=M/H)$ measurements performed in the zero-field cooling (ZFC) mode and in the field-cooling (FC) mode. As shown in the inset of Fig. 1, $\chi_{ZFC}(T)$ measured in a field of 100 Oe is irreversible and shows a peak at 2.4 K. In contrast, $\chi_{FC}(T)$ is reversible and increases monotonously down to 1.8 K resulting in the

¹ Corresponding author. E-mail: dxli@imr.tohoku.ac.jp

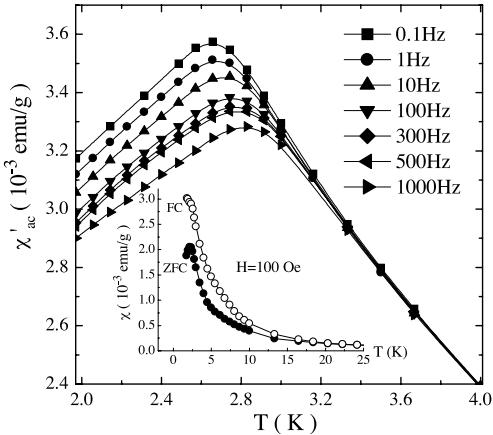


Fig. 1. Real component χ'_{ac} of the ac susceptibility of Ce_2CuSi_3 versus temperature between 2 and 4 K at various frequencies ranging from 0.1 to 1000 Hz. The inset shows the difference between FC and ZFC dc susceptibility.

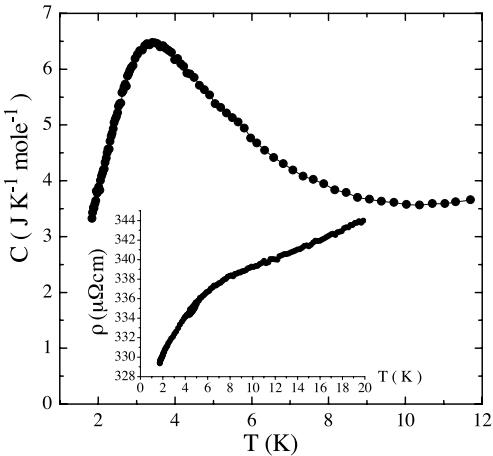


Fig. 2. Temperature dependence of specific heat of Ce_2CuSi_3 between 1.7 and 12 K. The inset displays the electrical resistivity data of Ce_2CuSi_3 at low temperatures.

evident bifurcation between the FC and ZFC curves at low temperatures. This irreversibility is also a usual characteristic for a spin glass. In this work, we define the spin freezing temperature T_f ($=2.7$ K at $v=0.1$ Hz) of Ce_2CuSi_3 as the peak temperature in $\chi'_{ac}(T)$ curve. It is interesting to note that different from canonical SG system, the deviation between χ_{ZFC} and χ_{FC} of Ce_2CuSi_3 starts at T_m ($=17$ K) much higher than T_f . It may be due to the formation of magnetic cluster causing a superparamagnetic contribution.

The specific heat and electric resistivity measurements give further evidences for above consequence. As illustrated in Fig. 2, $C(T)$ of Ce_2CuSi_3 shows a slow rise starting at $T \approx 10$ K followed by a broad maximum around $T=3.4$ K ($> T_f=2.7$ K). The data do

not show visible indication of a *long-range* magnetic phase transition. This particular behavior of $C(T)$ is a characteristic feature of a SG system with existence of magnetic clusters. It is clear from the inset of Fig. 2 that no anomaly (peak or sudden bend) is observed in $\rho(T)$ curve at T_f . This result suggests the absence of *long-range* spatial magnetic order near T_f in agreement with the $C(T)$ measurements. Between 1.5 and 10 K $\rho(T)$ curve manifests a broad bent with negative curvature. The formation of magnetic clusters may be responsible for this feature. The $C(T)$ and $\rho(T)$ behavior described above are different from those observed for general long-range magnetic order material such as isostructural Nd_2PtSi_3 that shows a rapid increase in $C(T)$ curve and a sudden bend in $\rho(T)$ curve at the phase transition temperature T_C [10].

In conclusion, we have observed the SG behavior with extended short-range magnetic order for Ce_2CuSi_3 from magnetic, transport and thermal properties measurements. The origin of SG behavior for Ce_2CuSi_3 is different from that in diluted metallic SG or uranium intermetallic compound. The frustrated magnetic moments may be originated from the competing between F and AF interactions in Ce-atom layer in which nearest neighbour Ce atoms form triangular structure. On the other hand, the statistical distribution of Cu and Si atoms could introduce the randomly distributed RKKY-type magnetic exchange interactions [8]. Thus satisfying the necessary conditions, frustration and randomness [4], for formation of spin-glass state is possible in Ce_2CuSi_3 .

References

- [1] C.Tien, L.Luo, Solid State Commun. 107 (1998) 295.
- [2] C.Tien, L.Luo, J.S.Hwang, Phys. Rev. B 56 (1997) 11710.
- [3] J.S.Hwang, K.J.Lin, C.Tien, Solid State Commun. 100 (1996) 169.
- [4] J.A.Mydosh, *Spin Glass: An Experimental Introduction* (Taylar & Francis, London, 1993).
- [5] S.Süllow, G.J.Nieuwenhuys, A.A.Menovsky, J.A.Mydosh, et.al, Phys. Rev. Lett. 78 (1997) 354.
- [6] D.X.Li, A.Donni, Y.Kimura, Y.Shiokawa, Y.Homma, Y.Haga, E.Yamamoto, T.Honma, Y.Onuki, J. Phys.: Condensed Matter. 11 (1999) 8263.
- [7] T.Nishioka, Y.Tabata, T.Taniguchi, Y.Miyako, J. Phys. Soc. Jpn. 69 (2000) 1012.
- [8] D.X.Li, S.Nimori, Y.Shiokawa, A.Tobo, H.Onodera, Y.Haga, E.Yamamoto, Y.Onuki, Appl. Phys. Lett. 79 (2001) 4183.
- [9] D.X.Li, Y.Shiokawa, Y.Haga, E.Yamamoto, Y.Onuki, J. Phys. Soc. Jpn. 71 (2002) 418.
- [10] D.X.Li, S.Nimori, Y.Shiokawa, Y.Haga, E.Yamamoto, Y.Onuki, Solid State Commun. 120 (2001) 227.