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Abstract

Motivated by a recent proposal for the pseudogap phase in underdoped cuprate superconductors, we examine the
normal-metal–d-density-wave (DDW) junctions. It is shown that the electronic structure of the DDW state in
semi-infinite plane can be investigated within a more general 1D particle-hole pairing system, and furthermore the
existence of the mid-gap state is determined by the number of zeros of the corresponding bulk Green’s function.
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It is observed in experiments that there are signa-
tures of a “partial” gap well above the superconduct-
ing temperature Tc in underdoped cuprate supercon-
ductors. This anomalous regime in the phase diagram
of the cuprate superconductors is termed the pseu-
dogap phase[1]. Experiments also find that the pseu-
dogap is consistent with a d-wave structure. Recently
Chakravarty et al. proposed that the pseudogap phase
of the underdoped cuprate is possibly the d-density-
wave (DDW) state.[2] It is therefore of interest to ex-
amine the possible signatures for such states in exper-
iments.

The d-wave-like structure of DDW prompts the ques-
tion as to the existence of zero-bias conductance peak
(ZBCP), well-known in the metal-d-wave superconduc-
tor (ND) junction[3], in tunneling measurements. It has
been realized that the ZBCP in ND junctions originates
from the mid-gap states that arise at certain interface
orientations. It is usually analyzed in the mean-field
level applying the Bogoliubov de Gennes equations.
While this approach has provided many useful insights
to the problem, it is however specifically designed for
studying ND junctions. We have developed a differ-
ent approach based on the non-equilibrium Keldysh-
Green’s function formalism which enables one to con-
struct systematically higher order corrections from the
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mean-field lattice Green’s functions[4–6]. The merit of
this approach is that it allows us to deal with the mid-
gap states in other systems in a unified fashion. In this
paper, we shall apply it to analyzing the mid-gap states
in systems which exhibit particle-hole pairing; an ex-
ample will be the DDW state in (110) direction.

Considering a junction consisting of a 2D normal
metal on the left (L) hand side (−∞ < x ≤ −a, a
is the lattice constant of the metal side) and a state
X (0 ≤ x < ∞) to be probed on the right (R) hand
side. Each side is governed by the Hamiltonian HL

and HR, respectively. The tunneling Hamiltonian con-
nects the interface points at x = −a and x = 0, and is
given by HT =

∑
y

t(|yL − yR|)(c†LcR + c†RcL), where
the summation is over lattice points along the inter-
face, which is chosen as the y direction. For definite-
ness, we take the left hand side a square lattice; other
types of lattice can also be considered in our formu-
lation. The total grand Hamiltonian is then given by
K = HL − µLNL + HR − µRNR + HT ≡ K0 + HT .
Here µL and µR are the chemical potentials and their
difference µL − µR is fixed to be the voltage drop eV
across the junction. In the non-equilibrium Keldysh-
Green’s function formalism, HT is adiabatically turned
on[4,6]. As a result, in the lowest order, one obtains
that the differential conductance is proportional to the
local density of states at x = 0
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dI/dV ∝ −
∑

y,y′
Im{Ḡ(r, r′, eV )}

∣∣∣∣∣
x=x′=0

, (1)

where Ḡ(r, r′, eV ) is the half-space Green’s function
of the state X defined only on a half plane. Note that
in the zeroth order of HT , the two half-spaces are dis-
connected, hence Ḡ(r, r′, eV ) has to vanish near the
boundary. In the simplest case, Ḡ has to vanish at the
hard wall x = −a [5]. To impose the boundary con-
dition, a Fourier transform in the y direction is per-
formed first. For each ky , the problem is then reduced
to one dimension (1D), and the hard wall becomes a
point. Eq.(1) thus becomes

dI/dV ∝ −
∑

ky

Im{g(x = 0, x′ = 0, ky, eV )} (2)

with g(x, x′, ky , eV ) being the half-space Green’s func-
tion of the reduced 1D Hamiltonian. The most general
form of this 1D Hamiltonian is (with n sites per unit
cell)

HR = −
∞∑

i=1

[
t1(c

A1
i )†cA2

i+1 + t2(c
A2
i+1)

†cA3
i+2

+ · · · +tn(cAn
i+n−1)

†cA1
i+n

]
+ h.c. (3)

Here A1 (i = 1) is the boundary point x = 0, ti de-
pends on ky ; we will consider half-filled configurations
where µR = 0. For DDW in (110) direction, only t1
and t2 are needed. We find t1,2 = 2(χR cos kya/

√
2 ∓

χI sin kya/
√

2) with χR + iχI being the hopping
amplitude over the bond. To make g vanishes at
x = −a, we construct g(x = 0, x′ = 0, ky , eV ) ≡
g(V ) = G(0, 0) − G(0,−2a)G−1(−a,−2a)G(−a, 0),
where G is the bulk Green’s function (with ky and
eV dependence suppressed)[5]. It is clear that when-
ever the bulk Green’s function G(−a,−2a) has zeros,
there will be poles in g(V ) which appear as peaks in
the dI/dV curve. Since, in general, g(x, x′, ky , eV )
can be expressed as eigenfunction expansions g =∑

n
φ∗

n(x)φn(x′)/(eV − En), any extended state will
have vanishing contribution at the interface due to
the normalization factor 1/

√
volume; the states corre-

sponding to the conductance peak must be localized
surface states. Furthermore, because there is no de-
generacy for any bound states in 1D systems, only one
state corresponds to each conductance peak.

The bulk Green’s function can be obtained by first
expressing Eq.(3) in the Fourier space, resulting in an
n × n Hamiltonian hk. The retarded Green’s function
is then the Fourier transform of (ω + iη − hk)−1. At
ω = 0, the Fourier integral can be evaluated analyt-
ically by substituting z = exp(inka) and performing
contour integration. For the case n = 2 and t1 < t2,
the Green’s function has anomalous behavior: start-

ing from any point over the A2 sublattice, the elec-
tron only propagates to the right with decaying length
ln t2/t1

2
. As a result, G(−a,−2a) has a zero at ω = 0

for t1 < t2, leading to a peak at eV = 0. For finite
µR, ω = 0 is shifted to ω = µR so that the peak shifts
to eV = µR. The condition t1 < t2 determines the
range of ky where the mid-gap peak in the DDW state
arises. As mentioned, this peak would correspond to a
localized surface state. In the n = 2 case, the wave-
function can be easily constructed. We find that Ψ ≈
(1, 0,−ε,0, ε2, 0,−ε3, 0, · · ·) with ε ≡ t1/t2. The con-
dition t1 < t2 is thus connected with the decay of the
wavefunction away from the surface.

For general n with µR = 0, the bulk energy dis-
persion consists of n energy bands. If n is odd, the
middle band crosses the zero energy; therefore, there
is no mid-gap state at ω = 0. Indeed, because at
ω = 0 one finds that G(−a,−2a) ≈

∮
|z|=1

z/[z2 + 1 −
iηsgn(t1t2 · · · tn)] dz always has poles inside |z| = 1, so
that G(−a,−2a) �= 0; hence there is no mid-gap state
at ω = 0. Similarly, for even n, we obtain that at ω =
0, G(−a,−2a) ≈ ∮

|z|=1
1/[z ± t2t4t6 · · · /t1t3t5 · · ·] dz,

which vanishes when |t2t4t6 · · · /t1t3t5 · · · | > 1. There-
fore, mid-gap states at ω = 0 exist for even n under
the condition |t2t4t6 · · · | > |t1t3t5 · · · |. The above only
concerns the mid-gap near ω = 0. In general, because
the energy dispersion consists of n bands, mid-gap
states could arise in other gap regimes at finite ω. This
indeed happens as one can easily check for a simple
example with n = 3 and t1 = 1, t2 = 1.5, and t3 = 2.
In this case, even though there is no mid-gap state at
ω = 0, at finite ω ≈ 2.0, all the poles when calculating
G(−a,−2a) lie outside |z| = 1, resulting in mid-gap
states at finite energy.
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