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Abstract

We study the hole-doping effects on the half-filled Hubbard ladder model with the frustrated orthogonal-dimer
structure. By using the density matrix renormalization group method, we discuss how strong geometrical frustration
affects the nature of spin excitations upon hole doping. We find that for large U with strong frustration, a spin-gap
metallic phase appears, for which excitations can be described by two independent quasiparticles.
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Strongly correlated electron systems with geometri-
cal frustration have attracted much interest. Prototyp-
ical systems are the pyrochlore compounds with the
lattice of corner-sharing tetrahedral network. [1–7] Re-
cent researches of the metallic pyrochlore compound
LiV2O4 [8] pointed out that frustration may be im-
portant to understand its heavy-fermion behavior. An-
other well-known pyrochlore compound Y(Sc)Mn2 [9]
with spin-liquid ground state is also in a metallic phase.

In this paper, we study the hole-doping effects on the
half-filled Hubbard model with such geometrical frus-
tration. Since it is difficult to precisely treat the hole-
doping effects on three-dimensional (3D) frustrated
systems, we study a simpler model in 1D, which still
possesses the essence of strong frustration in the above
systems. This simplification enables us to precisely cal-
culate the physical quantities by the density matrix
renormalization group (DMRG) method [10].

To be precise, we investigate the frustrated Hubbard
ladder with the orthogonal-dimer structure [11], as il-
lustrated in Fig. 1. Note that this model also has the
structure of a tetrahedral network. The Hamiltonian
we consider here is
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Fig. 1. Hubbard ladder with the orthogonal-dimer structure.

The solid and dashed lines correspond to the parameters t1
and t2, respectively.

H = −
∑

i,j,σ

tij(c
†
iσcjσ + h.c.) + U

∑

i

ni↑ni↓, (1)

where ciσ (c†iσ) annihilates (creates) an electron with
spin σ, and niσ = c†iσciσ. Electron hopping takes two
different values tij = t1, t2 as shown in Fig. 1. We
set t1 to be unity for simplicity. In the noninteracting
case (U = 0), the model has a dispersionless flat-band
mode: two modes are given by ε+(k) = −t1−4t2 cos(k)
and ε−(k) = t1, reflecting special geometry of the sys-
tem. Note that similar flat-band mode is also found in
the pyrochlore lattice. For t2/t1 = 0.5, a flat-band ε−
just touches a broad-band ε+ at k = ±π, as shown in
the inset of Fig. 2(a), while for t2/t1 > 0.5 two bands
intersect each other as in Fig. 2(b).

In order to discuss spin excitations in a hole-doped
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system near half-filling, we here compute three quanti-
ties, i.e. the spin gap ∆0 at half-filling, the spin gap ∆2

with two holes and the binding energy ∆B of two holes,

∆0 = E0(N, 1) − E0(N,0),

∆2 = E0(N − 2, 1) − E0(N − 2, 0),

∆B = 2E0(N − 1, 1/2) − E0(N, 0) − E0(N − 2, 0),

where E0(N,Sz) is the ground-state energy for the sys-
tem with N electrons and total spin Sz. We have cal-
culated these quantities up to N = 96 by the finite
DMRG method, and then performed a finite-size scal-
ing analysis.

Shown in Fig. 2 are the results for (a) t2 = 0.5 and
(b) t2 = 0.65. For t2 = 0.5, the spin gap ∆0 is always
finite for any value of U > 0. It is seen that hole-doping
immediately makes spin excitations gapless, i.e. ∆2 =
0. The situation is completely different for t2 = 0.65.
In this case, for U < Uc, doped holes are not mobile
because they are accommodated in a flat-band up to a
certain critical density of holes. For U > Uc, the spin
gap ∆0 shows similar behavior as in the t2 = 0.5 case.
In contrast, however, both of ∆2 and ∆B are finite for
U > Uc, implying formation of a bound state of holes
with the spin gap. It should be noticed here that the
spin gap ∆2 perfectly coincides with the binding energy
∆B for both cases of t2 = 0.5 and 0.65. This suggests
that the excited states in two holes may be described
by two independent quasiparticles.

We recall that the spin-gap ∆2 in a doped case is
totally different from ∆0 at half-filling. Therefore, the
mechanism of spin-gap formation in a hole-doped case
is different from that at half filling, and is due to the
attractive interaction between holes.

By performing similar calculations for various
choices of t2, we can deduce that the spin gap ∆2 has
a finite value in the region 0.5 < t2 < 0.84 when U is
sufficiently large, which is indeed consistent with the
results of the t-J model with the same ladder structure
[12]. This suggests that a flat-band mode, reflecting
the frustrated lattice structure, may play an impor-
tant role to form the spin gap in a metallic phase.
We expect that this-type of argument would be also
applied to the pyrochlore lattice near half filling.
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Fig. 2. Spin-gap ∆0 at half-filling, spin-gap ∆2 with two holes,

and binding energy ∆B of two holes: (a) t2 = 0.5 and (b)

t2 = 0.65. Insets show the energy-momentum dispersion rela-

tion at U = 0.
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