

Oscillatory and relaxation studies in the convection of supercritical ^3He

Horst Meyer ^{a,1}, Andrei B. Kogan ^{a,2},

^a Department of Physics, Duke University, Durham, N.C. 27708-0305

Abstract

We analyze the observed temporal profile $\Delta T(t)$ of the temperature difference, measured across a very compressible supercritical ^3He fluid layer in the convective state. The experiments were done along the critical isochore in a Rayleigh-Bénard cell after starting the vertical heat flow q . For $q > q_{ons}$ (“convection onset”), the transient $\Delta T(t)$ under given conditions of q and $\epsilon \equiv (T_c - T_c)/T_c$ ($T_c = 3.318\text{K}$) shows a damped oscillatory profile with period t_{osc} modulating a smooth base profile. The latter forms the tail of the transient which relaxes exponentially to the steady-state $\Delta T(\infty)$ with a time constant τ_{tail} . The scaled times t_{osc}/t_D and τ_{tail}/t_D from all the data could be collapsed onto two curves as a function of the Rayleigh number over ~ 3.5 decades. Here t_D is the diffusion time.

Key words: critical phenomena; hydrodynamics; convection ; transients

While a substantial amount of recent research has dealt with pure fluid convection in a Rayleigh-Bénard cell in a quasi steady-state (See for instance[1]), comparatively little study has been done on the transient behavior after the heat flow q has been started across a fluid layer. Here we study the temporal profile of the temperature drop $\Delta T(t)$ across the fluid layer (thickness $L=0.106\text{cm}$, aspect ratio 57) of a very compressible fluid, supercritical ^3He , before the steady state value $\Delta T \equiv \Delta T(\infty)$ is reached. Here $\Delta T > \Delta T_{ons}(\epsilon)$, the convection onset value, and $\epsilon \equiv (T - T_c)/T_c$ where $T_c = 3.318\text{ K}$. The range along the critical isochore is $5 \times 10^{-4} \leq \epsilon \leq 0.2$.

Experiments on the convective behavior of ^3He , both transient and steady state, were recently reported[2] at Rayleigh numbers $Ra < 5 \times 10^8$. In the measurements of $\Delta T(t)$ at a given ϵ and heat flow q , the temperature of the upper plate was kept constant and that of the bottom plate was left floating. A detailed discussion of

the fulfillment of the Boussinesq criteria in the experiments is given in ref.[2]. The present paper describes an analysis of some of the transients and their characteristic times, to be compared elsewhere with predictions by A. Onuki and his group[3].

Under certain conditions, to be described below, damped oscillations of $\Delta T(t)$ with a period $t_{osc}(q, \epsilon)$ were observed, following the initial sharp rise from zero after q is turned on. These result from a combination of density and high compressibility that leads to strong thermo-acoustic phenomena which have been shown responsible for very fast temperature homogenisation inside the fluid layer[4]. The mechanism involved for the accelerated energy transfer has been named “piston effect”, which results from the hot (or cold) boundary layer that forms where a heat is suddenly applied (or withdrawn). This layer then acts as a piston that isentropically compresses (decompresses) the bulk of the fluid, thus raising (lowering) the temperature in a homogeneous way, as has been described in refs[5,6]. A sequence of hot and cold piston effects produces maxima and minima in $\Delta T(t)$ until a steady-state regime is reached.

After the heat flow is started, the observed $\Delta T(t)$

¹ Corresponding author. Department of Physics, Duke University, Durham, NC 27708-0305, USA. E-mail: hm@phy.duke.edu

² Present address: Department of Physics, MIT, Cambridge MA 02139-4307, USA

profile is as follows: As q is increased beyond the q_{ons} needed for the convection onset, there is first an overshoot - or truncated oscillation, decaying to $\Delta T(\infty)$. This is similar to the observations in a liquid at constant pressure[7]. Further increase in q beyond a certain value produces damped oscillations with a period t_{osc} followed by a smooth base profile with a minimum, beyond which $\Delta T(t)$ tends exponentially from below to $\Delta T(\infty)$ with a relaxation time $\tau_{tail}(q, \epsilon)$. This is the exponential tail of the transient. The visibility and relative amplitude of these oscillations and the exponential tail is a function of ϵ and of q . For a given ϵ , both τ_{tail} and t_{osc} decrease with increasing q , where always $t_{osc} < \tau_{tail}$. When t_{osc} becomes comparable to the instrumental time constant of the thermometer circuitry, $\tau \simeq 1.3$ s., the oscillation amplitude and finally the first peak, the overshoot, become averaged out and only the smooth tail relaxation is observed.

At high enough values of q , an additional very broad maximum is observed before $\Delta T(\infty)$ is reached from above. The amplitude of this component is only at most 0.3 % of $\Delta T(\infty)$ and the corresponding relaxation time to steady state is estimated to be of order $5\tau_{tail}$. We will neglect here this additional component.

We have found that plots of both t_{osc} and τ_{tail} , when scaled by the diffusive time $t_D = L^2/4D$, and plotted versus $[Ra^{corr} - Ra_c]$, can be collapsed on two separate curves. Here D is the diffusivity, Ra^{corr} is the Rayleigh number corrected for the adiabatic temperature gradient [2] and $Ra_c = 1708$ is the critical Rayleigh number. The range of scaling extends over about 3.5 decades in $[Ra^{corr} - Ra_c]$.

In Fig.1 we show this scaling plot where the various symbols indicate the reduced temperatures ϵ where the transients were recorded. There are some systematic deviations and scatter of less than $\pm 10\%$ from the average curves. This is a remarkable result because with decreasing ϵ over the range for this plot, the compressibility and t_D increase by factors of 40 and 20 respectively, and the Prandtl number Pr increases from 2 to 42. Over approximately 2.5 decades of $[Ra^{corr} - Ra_c]$, the curves for t_{osc}/t_D and τ_{tail}/t_D can be represented by power laws with exponents of $\simeq -0.52$ and -0.60 . Hence both scaled times diverge as $[Ra^{corr} - Ra_c] \rightarrow 0$. There seems to be no clear dependence on Pr at these moderate values of Ra^{corr} , as shown by the collapsing of the data for various values of ϵ . We can therefore expect that the two sets of data in Fig.1 are independent of the fluid properties and hence they represent in a crude first approximation a universal set of curves.

For $\epsilon < 9 \times 10^{-3}$, no damped oscillations were detected, and the character of the transients seems to have changed (See ref[2]). An analysis of τ_{tail} at $\epsilon = 5 \times 10^{-4}$ showed the data to be inconsistent with an extrapolation from the curve in Fig 1 to the higher Ra numbers ($\sim 4 \times 10^8$) corresponding to these data.

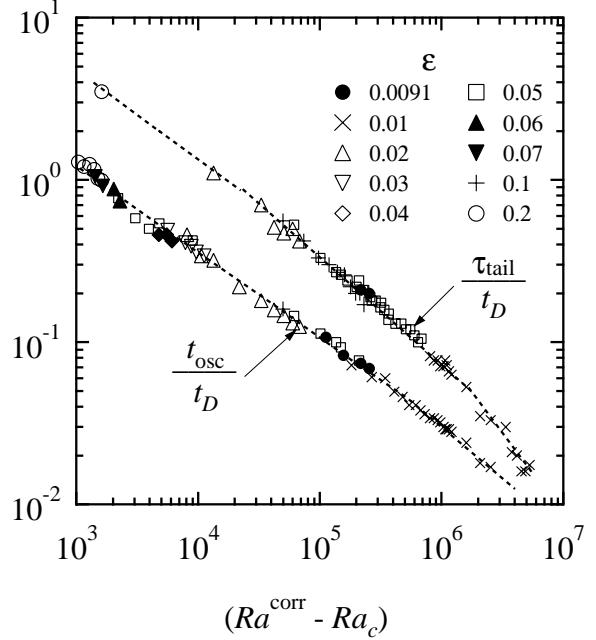


Fig. 1. Scaled plots of t_{osc}/t_D and τ_{tail}/t_D versus $[Ra^{corr} - Ra_c]$ for reduced temperatures $9 \times 10^{-3} \leq \epsilon \leq 0.2$. The two dashed lines are guides to the eye.

Acknowledgements

This work is supported by NASA grant NAG3-1838. We greatly appreciate the help of Fang Zhong with formatting the Figure.

References

- [1] J.J. Niemela, L. Skrbek, K.R. Sreenivasan and R.J. Donnelly, Nature **404**, 837 (2000), X. Chavanne, F. Chilla, B. Chabaud, B. Castaing and B. Hebral, Phys. Fluids **13**, 1300 (2001), X.Xu, K.M.S. Bajaj and G. Ahlers, Phys.Rev. Lett. **84**, 4357 (2000).
- [2] A.B. Kogan and H. Meyer, Phys. Rev. E **63**, 056310 (2001).
- [3] Y. Chiwata and A. Onuki, Phys. Rev. Lett. **87**, 144301 (2001), A. Furukawa and A. Onuki, Phys. Rev. E, (to appear).
- [4] A. Onuki and R.A. Ferrell, Physica A **64**, 245 (1990).
- [5] P. Carlès, Physica D **147**, 36 (2000) and private communication.
- [6] S. Amiroudine and B. Zappoli (private communication, and preprint).
- [7] R.P. Behringer, Rev. Mod. Phys. **57**, 657 (1985).