Carrier drift velocity in semiconducting strings
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Abstract

The carrier drift velocity in a 1D semiconducting sample attached to electrodes is derived from the Luttinger
model, where the electric field generated by image charges within the electrodes is explicitly taken into account. If
the length of the electrode is small enough compared to the sample length, the drift velocity v can be estimated as
va ~ (4e*/h)(1/es), where e, h, and ;s are the elementary charge, the Planck constant, and the dielectric constant
of the semiconductor, respectively. Compared to the experimental values of vq, the obtained relationship for vq is
found to be still valid for a 3D sample in the large limit of the external field.
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It is known that the carrier drift velocity in most
(1D) semiconductors tends to be saturated with in-
creasing applied electric field. Up to now, the evalu-
ation of the drift velocity has been mostly based on
the (Boltzmann) transport equation. However, under
a high field where the drift velocity tends to be sat-
urated, the validity of the (semiclassical) Boltzmann
equation has turned out to be violated due to some
quantum effects [1]. The aim of this article is, based on
the Luttinger model, to estimate the drift velocity of a
semiconductor with metal contacts.

We begin with a spinless (bosonized) Luttinger lig-
uid attached to electrodes (at x = 0, L, with their
length AL). Under the electromagnetic field A, (v =
0,1), the model Lagrangian is given by [2]
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where h, K(z), v(z), and e represent the Planck con-
stant, the interaction-dependent parameter character-
izing the Luttinger model, the velocity, and the elemen-
tary charge, respectively. Here €”#, which is antisym-
metric, is chosen as ¢'® = 1 [with the metric (+,—)],
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and the scalar field ¢ is normalized such that the den-
sity p and current j are related to p = —0, 0,5 = 0¢¢.
Then in a stationary current regime (9,5 = 0), the field
equation for ¢ indicates that

0z (vp/K) = 2eE/h, (2)

where E (= —0; Ao + 0¢ A1) is the electric field.

Given the metal contacts, FF can be composed of the
external field £ and the Coulomb field generated
by the image charge, E0™8) namely

E=E®) 4 pime), (3)

Notice that the direct Coulomb field due to the
electron-phonon and electron-electron interactions is
taken into account through the parameter K (z). If the
image charges are realized only within the electrodes,
E(m8) can be written using p as
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where ¢, is the dielectric constant of the sample semi-
conductor, Qo = [-AL,0]N[—L,0],Q: = [L, L+AL]N
[L,2L], and sgn (z) is the sign function. In a practi-
cal case, the condition of AL <« L is satisfied, so that
E(m8) (1) can be approximated as
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[1 + O(AL/L)} . (5)

Now we estimate the electric current I (= ej). Under
the boundary condition that the field ¢ outside the
metal contacts moves out rightward (for z > L + AL)
or leftward (for x < —AL), I can be derived from
Eq. (2) as [3]

I=(e’Kp/h) fﬂ z)dz, (6)
where K, = K(z = L+ AL) = K(z = —AL),
with Q = [-AL, L + AL]. Considering that Eq. (6)

corresponds to the Landauer formula, we can inter-
pret K, as the transmission coefficient 7 for the car-
rier to penetrate from the metal contact to the sam-
ple. Once K can be regarded as 7, the difference
of the quasi-Fermi level, which is fﬂ E(z)dz, is re-
lated to the corresponding potential difference with
perfectly conducting metal contacts, which amounts
to | o E®) dz, through the following relation (at zero
temperature) [4]:

J B de=(1-T) [ E(x (7)
Substituting Eq. (7) with 7 — K into Eq. (6) and

using Eqgs. (3) and (5), we can rewrite I (where the spin
degree of freedom is taken into account) as

I=2x(e?/h) p.v.fQE(img) (z)dz

= 2% (1) p(0)] x

1+O(AL/L)], (8)

where p.v. represents the principal value.
On the other hand, I can be expressed as the product
of ep(L + A) and the drift velocity vq at © = L + A:

I = evap(L)[1 + O(AL/L)), (9)
so that from Egs (8) and (9), we obtain
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Vg = x 10" em/s (for AL < L),  (10)
where use has been made of p(0) =
charge conservation.

Before examining the validity of Eq. (10), we show
that vg for £ — oo is invariant under the scaling of
the cross section S of the 1D sample as S — nS (n =
1,2...). Based on the Landauer model, K, in Eq. (6) is
replaced by Z]\?C;VQ Ty ey, Where Te, ., represents the
transmission probability for the channel mode (c1, c2)
in the y and z directions. If the carriers are well re-
stricted (within the square well potential with infinite
height) in the y and z directions, the mode number
turns out to be Ny = Ny = n. For E®®® — oo, the
dominant energy for the carrier is the kinetic energy

—p(L) due to the
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Fig. 1. The (saturation) drift velocity vq for E(®®) — oo vs the
dielectric constant £¢ for 3D semiconducting samples at low
temperature (4-130K). Notice that for PbTe, the temperature
dependence of £, [5] and the field dependence of vq [6] is large
enough, compared to those for other samples. The data of €4
(except PbTe) are taken from Ref. [7], while those of vq for Si,
Ge, CdS, and GaAs are after Refs. [8—11], respectively.

in the z direction, so that the mode-exchange scatter-
ing may be neglected, and that the remaining nonva-
nishing scattering can be mode independent, namely,
Terco = OciepZ11. Thus, I scales as I — nl, with the
result that vg (o< I/S) for B — oo is found to be
invariant under S — nS.

The experimental values of the (saturation) drift ve-
locity vg for E(*®) — oo are shown in Fig. 1. It is found
that vg is well represented by Eq. (10), which indicates
the validity of Eq. (10).

In summary, we have estimated, based on the Lut-
tinger model, the drift velocity vq of a 1D semiconduc-
tor whose ends are attached to electrodes. If the image
charges are realized only within the electrodes, vq4 can
be estimated for AL < L as in Eq. (10). The obtained
relationship for vg is still valid for a 3D sample in the
limit of E® — co. The detailed analysis of vq for
AL~L is in progress, and will be discussed elsewhere.
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