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Abstract

The carrier drift velocity in a 1D semiconducting sample attached to electrodes is derived from the Luttinger
model, where the electric field generated by image charges within the electrodes is explicitly taken into account. If
the length of the electrode is small enough compared to the sample length, the drift velocity vd can be estimated as
vd � (4e2/h)(1/εs), where e, h, and εs are the elementary charge, the Planck constant, and the dielectric constant
of the semiconductor, respectively. Compared to the experimental values of vd, the obtained relationship for vd is
found to be still valid for a 3D sample in the large limit of the external field.
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It is known that the carrier drift velocity in most
(1D) semiconductors tends to be saturated with in-
creasing applied electric field. Up to now, the evalu-
ation of the drift velocity has been mostly based on
the (Boltzmann) transport equation. However, under
a high field where the drift velocity tends to be sat-
urated, the validity of the (semiclassical) Boltzmann
equation has turned out to be violated due to some
quantum effects [1]. The aim of this article is, based on
the Luttinger model, to estimate the drift velocity of a
semiconductor with metal contacts.

We begin with a spinless (bosonized) Luttinger liq-
uid attached to electrodes (at x = 0, L, with their
length ∆L). Under the electromagnetic field Aν (ν =
0, 1), the model Lagrangian is given by [2]

L =
h

4

v(x)

K(x)

[
(∂vtφ)2 − (∂xφ)2

]
− e

∑
µ,ν

ενµAν∂µφ,(1)

where h, K(x), v(x), and e represent the Planck con-
stant, the interaction-dependent parameter character-
izing the Luttinger model, the velocity, and the elemen-
tary charge, respectively. Here ενµ, which is antisym-
metric, is chosen as ε10 = 1 [with the metric (+,−)],
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and the scalar field φ is normalized such that the den-
sity ρ and current j are related to ρ = −∂xφ, j = ∂tφ.
Then in a stationary current regime (∂tj = 0), the field
equation for φ indicates that

∂x(vρ/K) = 2eE/h, (2)

where E (= −∂xA0 + ∂tA1) is the electric field.
Given the metal contacts, E can be composed of the

external field E(ex) and the Coulomb field generated
by the image charge, E(img), namely

E = E(ex) + E(img). (3)

Notice that the direct Coulomb field due to the
electron-phonon and electron-electron interactions is
taken into account through the parameter K(x). If the
image charges are realized only within the electrodes,
E(img) can be written using ρ as

E(img)(x) =
−e

εs

1∑
i=0

∫
Ωi

sgn (x − x′)
ρ(2iL − x′)
(x − x′)2

dx′, (4)

where εs is the dielectric constant of the sample semi-
conductor, Ω0 = [−∆L, 0]∩[−L,0],Ω1 = [L,L+∆L]∩
[L, 2L], and sgn (x) is the sign function. In a practi-
cal case, the condition of ∆L � L is satisfied, so that
E(img)(x) can be approximated as
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E(img)(x) =
−e

εs
∆L

∑1

i=0
sgn (x − iL)ρ(iL)(x − iL)−2

× [1 + O(∆L/L)] . (5)

Now we estimate the electric current I (= ej). Under
the boundary condition that the field φ outside the
metal contacts moves out rightward (for x > L + ∆L)
or leftward (for x < −∆L), I can be derived from
Eq. (2) as [3]

I = (e2KL/h)
∫
Ω
E(x) dx, (6)

where KL = K(x = L + ∆L) = K(x = −∆L),
with Ω = [−∆L,L + ∆L]. Considering that Eq. (6)
corresponds to the Landauer formula, we can inter-
pret KL as the transmission coefficient T for the car-
rier to penetrate from the metal contact to the sam-
ple. Once KL can be regarded as T , the difference
of the quasi-Fermi level, which is

∫
Ω

E(x) dx, is re-
lated to the corresponding potential difference with
perfectly conducting metal contacts, which amounts
to

∫
Ω

E(ex) dx, through the following relation (at zero
temperature) [4]:

∫
Ω
E(ex) dx = (1 − T )

∫
Ω
E(x) dx. (7)

Substituting Eq. (7) with T → KL into Eq. (6) and
using Eqs. (3) and (5), we can rewrite I (where the spin
degree of freedom is taken into account) as

I = 2 × (e2/h) p.v.
∫
Ω
E(img)(x) dx

=
2e3

hεs
[ρ(L) − ρ(0)] × [1 + O(∆L/L)] , (8)

where p.v. represents the principal value.
On the other hand, I can be expressed as the product

of eρ(L + ∆) and the drift velocity vd at x = L + ∆:

I = evdρ(L)[1 + O(∆L/L)], (9)

so that from Eqs (8) and (9), we obtain

vd =
4e2

hεs
=

13.93

εs
× 107 cm/s (for ∆L � L), (10)

where use has been made of ρ(0) = −ρ(L) due to the
charge conservation.

Before examining the validity of Eq. (10), we show
that vd for E(ex) → ∞ is invariant under the scaling of
the cross section S of the 1D sample as S → nS (n =
1, 2 . . .). Based on the Landauer model, KL in Eq. (6) is

replaced by
∑N1,N2

c1,c2=1
Tc1c2 , where Tc1c2 represents the

transmission probability for the channel mode (c1, c2)
in the y and z directions. If the carriers are well re-
stricted (within the square well potential with infinite
height) in the y and z directions, the mode number
turns out to be N1 = N2 = n. For E(ex) → ∞, the
dominant energy for the carrier is the kinetic energy
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Fig. 1. The (saturation) drift velocity vd for E(ex) → ∞ vs the

dielectric constant εs for 3D semiconducting samples at low

temperature (4–130K). Notice that for PbTe, the temperature

dependence of εs [5] and the field dependence of vd [6] is large

enough, compared to those for other samples. The data of εs

(except PbTe) are taken from Ref. [7], while those of vd for Si,

Ge, CdS, and GaAs are after Refs. [8–11], respectively.

in the x direction, so that the mode-exchange scatter-
ing may be neglected, and that the remaining nonva-
nishing scattering can be mode independent, namely,
Tc1c2 � δc1c2T11. Thus, I scales as I → nI, with the
result that vd (∝ I/S) for E(ex) → ∞ is found to be
invariant under S → nS.

The experimental values of the (saturation) drift ve-
locity vd for E(ex) → ∞ are shown in Fig. 1. It is found
that vd is well represented by Eq. (10), which indicates
the validity of Eq. (10).

In summary, we have estimated, based on the Lut-
tinger model, the drift velocity vd of a 1D semiconduc-
tor whose ends are attached to electrodes. If the image
charges are realized only within the electrodes, vd can
be estimated for ∆L � L as in Eq. (10). The obtained
relationship for vd is still valid for a 3D sample in the
limit of E(ex) → ∞. The detailed analysis of vd for
∆L∼L is in progress, and will be discussed elsewhere.
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