

Superconductivity of YBCO/(Sr,Ca)-Cu-O/YBCO system

Shinichiro Koba^{a,1}, Masahiro Saito^{b,2}, Zon Mori^a, Toshiya Doi^b, Yoshinori Hakuraku^b

^a Yatsushiro National College of Tech., 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto 866-8501, Japan

^b Faculty of Engineering, Kagoshima University, 1-21-40 Koorimoto, Kagoshima 890-8232, Japan

Abstract

The dependence of Tc on oxygen content and (x) of $Sr_xCa_{0.1-x}CuO_z$ films sandwiched with $YBa_2Cu_3O_{7-\delta}$ were examined. The Tce at $x=0.1$ ranged from 55K to 91K concerning the variation of oxygen pressure (0.1-1.0Torr). The dependence of Tco on (x) ranged over that of YBCO electrodes and revealed an optimal Tc (Tco=95K, Tce=91K) at $x=0.05$.

Key words: sandwiched thin films; compound cuprate;YBCO

1. Introduction

Superconductivity with high Tc's of 80-110K have been reported on high pressure synthesized complex-cuprates (A-Cu-O_{2- α}) related with the alkaline-earth A=(Sr,Ca) for instance ref. [1]. On A-CuO_y films with A=Sr, the properties of A=Sr₁ and Sr₂ have been reported on microstructures [2] and superconductivity of high quality thin films with -75K by MBE [3], respectively. We have reported the electrical conductivity of Sr_xCuO ($x=0.1-0.0$) in a sandwiched structure $YBa_2Cu_3O_{7-\delta}/Sr_xCuO/YBa_2Cu_3O_{7-\delta}$ that $Sr_{0.1}CuO$ of $x=0.1$ has been Tce= 93.8K over that of YBCO electrodes [4]. Here we describe the superconductivity and the dependence of Tc on oxygen and compound ratios (x) of $Sr_xCa_{0.1-x}CuO_z$ films in $YBa_2Cu_3O_{7-\delta}/Sr_xCa_{0.1-x}CuO_z/YBa_2Cu_3O_{7-\delta}$ system (YBCO/Sr_xCa_{0.1-x}CuO_z/YBCO).

2. Experimental

YBCO/(Sr,Ca)CuO_z/YBCO was sputter-deposited on SrTiO₃(STO) substrates oriented (100) in an ap-

paratus with two DC magnetron-sputtering- sources. YBCO electrodes were fabricated on STO at 800°C in flowing oxygen gas at pressure of 1.0Torr [4], [5]. The thickness of each YBCO film was 1500Å[4]. Above sputtering process for YBCO electrodes was followed by annealing for the orthorhombic c-axis orientation film with the lattice constant $c=11.68\text{\AA}$ under conditions of a substrate temperature (Ts) of 515°C for 30minutes in the oxygen atmosphere at 300Torr. (Sr,Ca)CuO_z thin films were sputter-deposited to the thickness of 2200Åat the deposition rate of 110-220Å/min. Powders of SrO, CaO and CuO were mixed in various ratios (x) of Sr and Ca to prepare the discoidal press-forming targets which were synthesized in an air atmosphere by sintering at 930°C for 12 hours. Optimum values for both Ts=500°C and the flowed sputtering oxygen partial pressure Po=0.3Torr, which were due to the dependence of Tc in the (Sr,Ca)CuO_z thin films ($x=0.1$), were set for the Ca substitution. The area of the YBCO/(Sr,Ca)CuO_z/YBCO sandwich was 1 mm square as shown in Fig.1 (a). The electrical resistance (R) was measured with a constant dc electric current of 3mA/cm² passing along the cross section from YBCO-L3 to YBCO-L1 in Fig. 1 (a). The constancy of electric current was verified by the voltage drop of the standard resistor connected in a series. Details of the measurement are given in ref. 4,5.

¹ E-mail: koba@as.yatsushiro-nct.ac.jp, FAX: 0965-53-1319

² Present affiliation: Fujitsu Ltd.

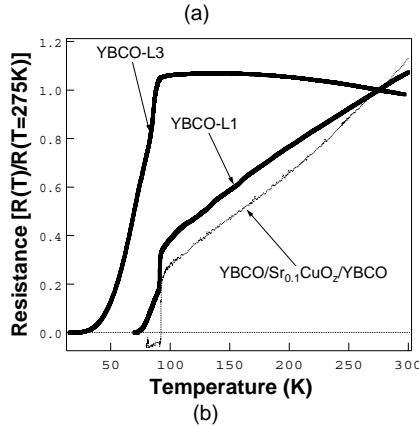


Fig. 1. Schematic of the cross section of YBCO/(Sr,Ca)CuO_z/YBCO (a), and electrical resistance, normalized at 275K, plotted against temperature, on YBCO electrodes and along the cross section in YBCO/Sr_{0.1}CuO_z/YBCO fabricated at the optimum Po (=0.3Torr) (b).

3. Results

Figure 1 (b) shows the superconductive transition of the horizontal direction of YBCO electrodes as L1 and L3 in this tri-layered system. The T_{ce} of YBCO-L1, -L3 were 72K and 19K for L1 adhered to the substrate and the top layer L3, respectively. A transition in Fig. 1 (b) along the cross section (shown in Fig. 1 (a)) in YBCO/Sr_{0.1}CuO_z/YBCO has higher T_c compared with that of YBCO electrodes. A clear dependence of T_c and R at normal state of YBCO/Sr_{0.1}CuO_z/YBCO on the oxygen pressure (Po) were observed. The T_{ce} was found to range from 76K to 91K with a corresponding variation in (Po) of between 0.2-1.0Torr. A value of Po=0.3Torr gives the optimum composition of oxygen with the highest T_{co} of 97K with T_{ce}=92K. Utilizing the optimized oxygen composition (Po=0.3Torr), the variation of the T_{ce} value against (x) of Sr_xCa_{0.1-x}CuO_z ranged from 85K to 91K over that of YBCO electrodes as shown in Fig. 2 (a). The T_c at the optimum composition (x=0.05) reached T_{co}=95K with T_{ce}=91K. In Fig. 2 (b), R at 273K decrease with a corresponding increase of (0.1-x), the substitution of Ca. A (002) peak of CuO was confirmed in the XRD pattern on Sr_xCa_{0.1-x}CuO_z films. The Sr_{0.5}Ca_{0.5}CuO_z film with the higher R had the c-axis orientation with lattice constant of $c \approx 3.4\text{\AA}$, as evidenced by the (001) and (002) peaks in the XRD pattern, illustrating an infinite layer SrCuO_{2- β} as opposed to Sr_xCa_{0.1-x}CuO_z. This transition of crystal structure is not unexpected

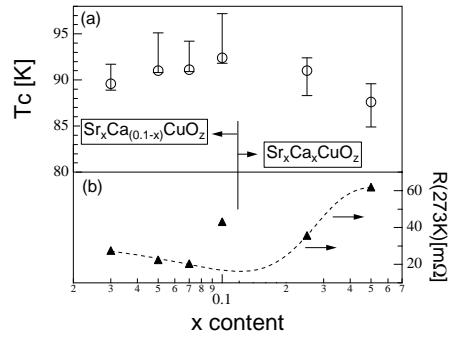


Fig. 2. Variations of both T_c and the electrical resistance in YBCO/(Sr,Ca)CuO_z/YBCO against (x) of Sr_xCa_yCuO_z (with y=x or 0.1-x) in YBCO/Sr_xCa_yCuO_z/YBCO. (a) variations of T_c with T_c-middle (open symbols), T_{co} (upper bars) and T_{ce} (under bars), (b) values of the electrical resistance at 273K.

considering the small quantity of both (Sr, Ca) and Ca which are intercalated in CuO and SrCuO_{2- β} respectively. However, the dependence of both T_c and R on the value of (x) in YBCO/Sr_xCa_{0.1-x}CuO_z/YBCO shows a carrier doping effect with the intercalation in base insulators as CuO and SrCuO_{2- β} .

4. Conclusion

On the dependence on oxygen at x=0.1 in sandwiched system, the T_{ce} ranges from 76K to 91K. The dependence of T_c on (x) of Sr_xCa_{0.1-x}CuO_z ranged over that of YBCO electrodes and revealed an optimal T_c at x=0.05 with T_{co} at 95K and T_{ce} at 91K.

References

- [1] Z. Hiroi, M. Azuma, M. Takano, Y. Takeda, Physica C **208** (1993) 286.
- [2] S. Takeno, S. Nakamura, Y. Terashima, T. Miura, Physica C **206** (1993) 75. C **213** (1993) 345.
- [3] S. Karimoto, H. Yamamoto, T. Greibe, M. Naito, Jpn. J. Appl. Phys. **228** (1994) 129.
- [4] S. Koba, R. Nagata, M. Onishi, Y. Ozono, K. Shibata, S. Higo, I. Kawano, T. Kushida, Y. W. Kim, T. Ogushi, Physica C **282-287** (1997) 707.
- [5] T. Ogushi, M. Hirose, S. Koba, S. Higo, I. Kawano, Mod. Phys. Lett. B **40** (1995) L127.