

Magnetization Process in Mixed Magnetic Chains $(\text{CH}_3)_2\text{CHNH}_3\text{Cu}(\text{Cl}_x\text{Br}_{1-x})_3$ over the Gapless Phase Induced by Bond Randomness

H. Manaka^{a,1}, I. Yamada^b, H. Mitamura^c, T. Goto^c

^a Photon Factory, IMSS, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

^b Department of Physics, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^c Institute for Solid State Physics, the University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan

Abstract

Mixed magnetic systems $(\text{CH}_3)_2\text{CHNH}_3\text{Cu}(\text{Cl}_x\text{Br}_{1-x})_3$ over the intermediate phase ($0.44 < x < 0.87$) are good candidate compounds for experimental studies on the gapless state induced by bond randomness. We performed measurements of the magnetization process at 1.7 K on these mixed compounds. As a result, a typical spin flop transition, which indicated absence of the energy gap, was detected. From the variation in the spin flop transition field with x , the expected value of spins $\langle S_i^z \rangle$ was found to reach its maximum at $x \simeq 0.71$, the point at which bond randomness is highest.

Key words: bond randomness; gapless state; $(\text{CH}_3)_2\text{CHNH}_3\text{Cu}(\text{Cl}_x\text{Br}_{1-x})_3$; magnetization process;

Recently, we found useful candidate compounds for the investigation of the gapless state induced by bond randomness; they are $(\text{CH}_3)_2\text{CHNH}_3\text{Cu}(\text{Cl}_x\text{Br}_{1-x})_3$ (abbreviated as IPACu $(\text{Cl}_x\text{Br}_{1-x})_3$)[1] obtained by mixing the almost isomorphous compounds $(\text{CH}_3)_2\text{CHNH}_3\text{CuCl}_3$ and $(\text{CH}_3)_2\text{CHNH}_3\text{CuBr}_3$ [2,3]. As shown in the schematic drawing of the crystal structure of IPACu X_3 ($X=\text{Cl}, \text{Br}$), which is given in Fig. 1 in Ref. 4, the neighboring Cu ions both in each dimer and between the dimers are bridged by X ions, which we express as Cu-(X,X)-Cu. The intradimer exchange interaction $J_{\text{intra}}(X, X)$ and the interdimer one $J_{\text{inter}}(X, X)$ were determined to be $J_{\text{intra}}(\text{Cl}, \text{Cl})/k = +54.1$ K and $J_{\text{inter}}(\text{Cl}, \text{Cl})/k = -23.5$ K from the analysis of the magnetic susceptibility $\chi(T)$ of IPACuCl $_3$ [4], while $J_{\text{intra}}(\text{Br}, \text{Br})/k = -61$ K and $J_{\text{inter}}(\text{Br}, \text{Br})/k = -33$ K from $\chi(T)$ of IPACuBr $_3$ [5]. Therefore, the ground states of these compounds are different from each other although both compounds

have a finite energy gap, i.e., IPACuCl $_3$ realizes the Haldane state[6], while IPACuBr $_3$ is the singlet dimer state.

When Cl ions in IPACuCl $_3$ are randomly substituted by Br ions, we expect $J_{\text{inter}}(\text{Cl}, \text{Br}) = J_{\text{inter}}(\text{Br}, \text{Cl}) < 0$ because of $J_{\text{inter}}(\text{Cl}, \text{Cl}) < 0$ and $J_{\text{inter}}(\text{Br}, \text{Br}) < 0$. On the other hand, $J_{\text{intra}}(\text{Cl}, \text{Br}) = J_{\text{intra}}(\text{Br}, \text{Cl}) < 0$ is obtained from analysis of the $\chi(T)$ data, as will be reported elsewhere[7]. To express the degree of the bond randomness, we introduce a parameter P which indicates the probability of $J_{\text{intra}} > 0$; $(1 - P)$ inevitably the probability of $J_{\text{intra}} < 0$. Since $J_{\text{intra}}(\text{Cl}, \text{Cl}) > 0$, $J_{\text{intra}}(\text{Cl}, \text{Br}) < 0$ and $J_{\text{intra}}(\text{Br}, \text{Br}) < 0$, we obtain the relation $P = x^2$ [7].

From the $\chi(T)$ and magnetic specific heat measurements for $0 \leq x \leq 1$ [1], we expected that the gapped state persists for $0 \leq x \leq 0.44$ and $0.87 \leq x \leq 1$, while the gapless state induced by bond randomness appears over the intermediate phase ($0.44 < x < 0.87$). As a result of realizing the gapless phase, the antiferromagnetic long-range order occurs at $T_N \simeq 15$ K,

¹ E-mail: hirotaka.manaka@kek.jp

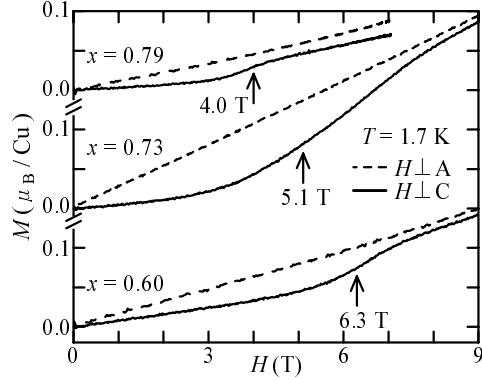


Fig. 1. The magnetization curves for $x = 0.79, 0.73$ and 0.60 . The spin flop transition appears when $\mathbf{H} \perp \mathbf{C}$ plane. Each position of the dM/dH curve is defined as the spin flop transition field indicated by an arrow.

which is due to the non-negligible interchain exchange interaction estimated to be less than 0.5 K[1]. To gain more information about the intermediate phase we performed measurements of the magnetization process at 1.7 K ($\ll T_N$). An external field \mathbf{H} was applied along the normals of the three orthogonal surfaces of each as-grown sample, A, B and C, as named in Fig. 4. According to the $\chi(T)$ data over the intermediate phase[1], the $\chi(T)$ curves for $\mathbf{H} \perp \mathbf{C}$ plane, χ_C , are found to correspond to typical $\chi_{\parallel}(T)$, while the curves for $\mathbf{H} \perp \mathbf{A}$ plane and B plane, χ_A and χ_B , are like $\chi_{\perp}(T)$. Therefore, a spin flop transition, which indicates absence of the energy gap, is expected to appear when the $M(H)$ curves for $\mathbf{H} \perp \mathbf{C}$ plane.

Figure 1 shows the representative $M(H)$ curves over the intermediate phase. The $M(H)$ curves for $\mathbf{H} \perp \mathbf{A}$ plane show a straight line, but those for $\mathbf{H} \perp \mathbf{C}$ plane exhibit a typical spin flop transition. Therefore, the magnetic easy axis is found to be perpendicular to the C plane. When the values of the spin flop transition field H_{sf} are determined from the peak position of the derivative curve dM/dH for $\mathbf{H} \perp \mathbf{C}$ plane, the variation of H_{sf} with x as well as $P = x^2$ are shown in Fig. 2. As can be seen in this figure, the values of H_{sf} monotonically increase with decreasing x . On the other hand, the $M(H)$ curves for $0 \leq x \leq 0.44$ and $0.87 \leq x \leq 1$ did not show a spin flop transition at all[7].

The appearance of magnetic long-range order means that the expected value of spins is not zero, i.e., $\langle S_i^z \rangle \neq 0$. We examine how $\langle S_i^z \rangle$ is affected by changing bond randomness. On the basis of the molecular field theory, H_{sf} is represented by using χ_{\parallel} and χ_{\perp} as

$$H_{sf} = \sqrt{2K/(\chi_{\perp} - \chi_{\parallel})}, \quad (1)$$

in which K is the magnetic anisotropy constant. In the present compounds, the magnetic anisotropy is due to the two-spin interactions such as the magnetic dipole-

Fig. 2. The variations of the magnetic anisotropy constant K and the spin flop transition field H_{sf} with x and $P = x^2$, as indicated by closed circles and the open triangles, respectively. The crosses represent no observation of the spin flop transition. The solid line is a guide for the eyes.

dipole interaction and the anisotropic exchange interaction, and consequently, $K \propto \langle S_i^z \rangle \langle S_j^z \rangle$. The variation in K with P suggests how $\langle S_i^z \rangle$ changes by varying the bond randomness. Employing $\chi_{\parallel} \equiv \chi_C$ and $\chi_{\perp} \equiv (\chi_A + \chi_B)/2$ and applying the values of χ_A , χ_B and χ_C observed at 1.8 K[1] into eq. (1), we calculate K at each value of x . The variation in the value of K with x as well as $P = x^2$ is added in Fig. 2. As can be seen in this figure, K versus P describes a parabolic curve with the maximum at $P \simeq 0.5$. We anticipate that $\langle S_i^z \rangle$ reaches its maximum at $P \simeq 0.5$, the point at which bond randomness is highest.

The authors would like to thank K. Hida and T. Nakamura for useful comments and discussion. This work was supported by a Grant-in-Aid for Scientific Research (B) from the Japan Society for Promotion of Science, and partly by a Grant-in-Aid for Scientific Research on Priority Areas (B) from the Ministry of Education, Sports, Science and Technology of Japan.

References

- [1] H. Manaka, I. Yamada, H. Aruga Katori, Phys. Rev. B 63 (2001) 104408.
- [2] S. A. Roberts, D. R. Bloomquist, R. D. Willett, H. W. Dodgen, J. Am. Chem. Soc. 103 (1981) 2603.
- [3] D. R. Bloomquist, R. D. Willett, J. Am. Chem. Soc. 103 (1981) 2615.
- [4] H. Manaka, I. Yamada, K. Yamaguchi, J. Phys. Soc. Jpn. 66 (1997) 564.
- [5] H. Manaka, I. Yamada, J. Phys. Soc. Jpn. 66 (1997) 1908.
- [6] F. D. M. Haldane, Phys. Rev. Lett. 50 (1983) 1153.
- [7] H. Manaka *et al.*, in preparation.