

Session 23aC

Antiferromagnetism and checkerboard charge order in the vortex state

23aC1

Shou-Cheng Zhang

Dept. of Physics, Stanford University, Stanford, CA 94305

The central issue of high T_c superconductivity is the interplay between antiferromagnetism (AF) and superconductivity (SC). SO(5) theory proposes to unify these two forms of order under a common symmetry principle. In 1997, this theory predicted the AF vortex core in the SC state under a magnetic field. This prediction has now been verified by a number of experiments, including elastic and inelastic neutron scattering, NMR, μ sR and STM. In this talk, I shall review recent experimental and theoretical progress on the AF vortex state. In particular, we will propose a new state in which Cooper pairs form a checkerboard crystal in a AF background. This state could be realized in underdoped cuprates around the vortex core or above H_c2 .

Resonant magnetic mode in high- T_C cuprates

23aC2

Philippe Bourges*

Laboratoire Léon Brillouin, CEA-Saclay, 91191 Gif/Yvette

The spin dynamics of high- T_C cuprates measured by inelastic neutron scattering will be discussed. Over the years, these measurements have evidenced a new magnetic excitation present only in the superconducting state. In particular, recent experiments on single layer Tl₂Ba₂CuO_{6+ δ} , have been performed near optimum doping ($T_c \sim 90$ K) that provide evidence of a sharp magnetic resonant mode below T_c in a very similar way than previous reports on bi-layers YBCO and BSCO systems. This result supports models that ascribe a key role to magnetic excitations in the mechanism of superconductivity.

If the abstract is too long, a frame is automatically drawn to indicate the area inside which the

* Collaborators: Y. Sidis, S. Pailhès (LLB-Saclay), B. Keimer, C. Ulrich, L. Capogna, S. Bayrakci (MPI-Stuttgart) L.P. Regnault (CEA-Grenoble),

23aC3 Comparative Study on the Magnetic Excitation Spectra of Y123 and La214 High- T_c Systems - Are the Dynamical Stripes important? -

M. Sato^a, M. Ito^a, H. Harashina^a, Y. Yasui^a, S. Iikubo^a, K. Kakurai^b

^aDepartment of Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan

^bAdvance Science Research Center, JAERI, Tokai, Ibaraki 319-1105 Japan

Neutron data of magnetic excitation spectra χ'' of $\text{YBa}_2\text{Cu}_3\text{O}_{6.5}$ are compared with results of calculations obtained by the expression $\chi(\mathbf{q},\omega)=\chi^0(\mathbf{q},\omega)/\{1+J(\mathbf{q})\chi^0(\mathbf{q},\omega)\}$, where $J(\mathbf{q})=J(\cos q_x a + \cos q_y a)$. Choosing proper values of band parameters and the T -independent gap amplitude with d -wave symmetry, we obtained quite satisfactory agreement between the observed and calculated results without considering dynamical “stripes”. It is found that the broadening at the quasi particles has a role to suppress the antiferromagnetic ordering. Similar studies have also been carried out for La214, where effects of the “dynamical stripes” can be clearly identified.

23aC4 Paramagnetic Vortex State in $\text{Pr}_{2-x}\text{Ce}_x\text{CuO}_4$ Single Crystals

Jeff E. Sonier^a, Ka Fai Poon^a, Graeme M. Luke^b, Pavlos Kyriakou^b, Richard L. Greene^c

^aDepartment of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

^bDepartment of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

^cCenter for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD-20742, USA

Muon spin rotation (μ SR) measurements of the internal magnetic field distribution in the vortex state of $\text{Pr}_{2-x}\text{Ce}_x\text{CuO}_4$ single crystals are presented. A large increase in the average internal field is observed when the crystals are cooled below T_c . The observation of a paramagnetic shift in the vortex state with a local probe supports models attributing the paramagnetic Meissner effect to currents flowing inside the superconductor. We also report measurements of the in-plane magnetic penetration depth λ_{ab} for the case where a diamagnetic shift is observed below T_c .