

Session 23CP

Resonant Two-Magnon Raman Scattering in Two-Dimensional Mott Insulators

23CP1

Hiroaki Onodera, Kenji Tsutsui, Takami Tohyama, Sadamichi Maekawa

Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

We investigate the resonant two-magnon Raman scattering in two-dimensional (2D) Mott insulators by using a half-filled 2D Hubbard model. By performing numerical diagonalization calculation for a small cluster, we find that the model can reproduce the experimental features that the Raman intensity is enhanced when the incoming photon energy ω_i is not near the absorption edge but well above it. This is because the photoexcited states for the resonance are characterized by the charge degree of freedom, while the absorption edge is by the spin degree of freedom.

Study of Phonon Anomalies in Stripe phase of High T_c Cuprates

23CP2

Eiji Kaneshita, Masanori Ichioka, Kazushige Machida

Department of Physics, Okayama University, Okayama 700-8530, Japan

We theoretically investigate phonon anomalies in various high T_c cuprates in terms of stripe concept. The phonon anomalies are considered to be caused by coupling with charge translational modes of stripes. The collective stripe modes are taken into account by means of random phase approximation based on mean-field two dimensional Hubbard model, and the phonon self-energy correction was evaluated. In the result, it turns out that the coupling with stripes causes phonon dispersion gap. In this study we also investigate the oscillation modes of phonon at the gap, based on the linear response theory. The gapped branches of phonon are found to be in-phase and out-of-phase oscillations relative to the charge collective mode.

23CP3 Cu-NQR study for stripe ordering in La-based cuprate

Masahiro Matsumura, Takahiro Sawa, Takayuki Tamura, Nobuyuki Yamamoto, Hideki Yamagata

Department of Material Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan

Cu-NQR spectra were measured in $\text{La}_{2-x-y}\text{M}_y\text{Sr}_x\text{CuO}_4$, ($\text{M}=\text{Nd, Gd, Eu, Pr and Y}$), and $\text{La}_{2-x}\text{Ba}_x\text{CuO}_4$ with $x=1/8$. The low temperature tetragonal (LTT) structure is stabilized below T_{d2} in all the samples other than $\text{M}=\text{Pr}$. The usual NQR spectra observed in $T > T_{d2}$ in all the samples change to abnormally broad ones after a complete *wipeout* of NQR signal below T_{d2} except for the cases of $\text{M}=\text{Nd, Gd and Pr}$. In the cases of $\text{M}=\text{Nd}$ and Gd , the complete wipeout continues to 1.5 K probably due to the extrinsic nuclear relaxation path through the paramagnetic fluctuation of Nd and Gd moment. In the case of $\text{M}=\text{Pr}$, usual NQR spectrum continues to 1.5 K due to no structural transition to LTT phase. These results suggest a pinning in the LTT phase of stripe ordering inherently existing in the doped CuO_2 plane in La-based cuprate. The common broad spectra at 1.5 K were analyzed in terms of static stripe model.

23CP4 Dynamical Stripe Correlation in the d-p Model at 1/8-filling

Shigeru Koikegami^a, Takashi Yanagisawa^b, Masaru Kato^c

^a*Japan Society for the Promotion of Science, 6-Ichibancho, Chiyoda-ku, Tokyo 102-8471, Japan*

^b*Nanoelectronics Research Institute, AIST Tsukuba Central 2, Tsukuba 305-8568, Japan*

^c*Department of Mathematical Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan*

We investigate the dynamical stripe correlation in the two-dimensional d-p model at 1/8-filling on the basis of the dynamical cluster approximation combined with the unrestricted fluctuation exchange approximation. We calculate the one-particle spectral function, the charge correlation function, and the spin correlation function at finite temperature. We obtain the fully self-consistent solutions near 1/8-filling. Our obtained solutions are completely metallic as far as in the one-particle picture. However, the charge and spin correlation functions reflect the existence of the quasi-one-dimensional fluctuation. This fluctuation tends to form the vertical stripe state.

23CP5 Extrinsic (Bi)Polaronic Metal-Insulator Transition in Doped High- T_c Oxides

Safarali Dzhumanov^a, Ulugbek Kurbanov^a, Ryskul Yusupov^a, Kuanyshbek Shunkeev^b

^a*Institute of Nuclear Physics, 702132 Tashkent, Uzbekistan*

^b*Aktobe State University, 463000 Aktobe, Kazakhstan*

Unlike the Mott and Anderson transitions the new extrinsic (bi)polaronic metal-insulator transition (MIT) in doped oxide high- T_c superconductors (HTSC) is studied within the continuum model of extrinsic carrier self-trapping and the extrinsic (bi)polaronic band model using the variational method and tight-binding approximation. The proper criterions for extrinsic Mott transition and (bi)polaronic MIT are obtained. We show that the anisotropy of the dielectric or (bi)polaronic properties of HTSC is responsible for the smooth MIT, stripe formation and suppression of high- T_c superconductivity. We explain the observed in-gap states and MIT in doped oxide HTSC in terms of the large (bi)polaron model, the extrinsic Mott transition and the extrinsic (bi)polaronic MIT and find good agreement with various experiments.

Hall coefficient anomalies in Kondo-lattice CeAl₂**23CP6**A.V. Bogach^a, N.E. Sluchanko^a, V.V. Glushkov^a, S.V. Demishev^a, H. Ohta^b, O.D. Chystyakov^c^a*General Physics Institute of RAS, Vavilov str, 38, Moscow, 119991, Russia*^b*Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan*^c*Institute of Metallurgy and Material Science of RAS, Leninskii Prospect, 49, Moscow, 117334, Russia*

Anomalous Hall effect in paramagnetic and modulated antiferromagnetic (AFM) phases of a Kondo-lattice CeAl₂ has been studied in a wide range of temperatures (1.8-300K) and magnetic fields (up to 80 kOe). It is shown that the large anomalous skew scattering component R_H^a has a broad maximum around T≈4K depressing by a factor of 3 in H≈80 kOe. The non-monotonous behavior of magnetic components R_H^{am} in magnetic field below 40 kOe and a narrow maximum of R_H^{am}(T) at T=T_N≈3.85K are likely to be attributed to the AFM-domains reorientation process at liquid helium temperatures. The problem of two magnetic phase transitions in CeAl₂ is discussed from the point of view of the data obtained.

Low-frequency noise in intermediate valent compound SmB₆**23CP7**V. Glushkov^a, N. Sluchanko^a, S. Demishev^a, S. Safonov^b, A. Savchenko^b, H. Ohta^c, S. Kunii^d^a*General Physics Institute of RAS, Vavilov str, 38, Moscow, 119991, Russia*^b*Physics Department, University of Exeter, Stocker Road, Exeter EX4 4QL, UK*^c*Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan*^d*Department of Physics, Tohoku University, Sendai, Japan*

The study of the noise characteristics along different crystallographic directions in the intermediate valence compound SmB₆ revealed the strong anisotropic enhancement of the low-frequency resistance noise at T<15K. The noise voltage temperature dependencies in SmB₆ demonstrate a broad maximum at T≈11K which is very similar to the anomaly in the Hall mobility¹. The anomalies observed are discussed in terms of a many-body states formation resulting from fast valence fluctuations on Sm-sites.

¹N.E.Sluchanko et al., *Phys.Rev. B* **61**, 9906 (2000); *Physica B* **312-313C** 331 (2002).

Magnetotransport in (Y_{1-x}Gd_x)Co₂ alloys near to magnetic phase boundary**23CP9**Alexander Burkov^a, Alexander Zyuzin^b, Joachim Schumann^a, Hartmut Vinzelberg^a,
Takao Nakama^c, Masato Hedo^c, Katsuma Yagasaki^c^a*Institute of Solid State and Materials Research Dresden P.O.Box 270016, D-01701, Dresden, Germany*^b*A. F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, Sankt-Petersburg 194021, Russia*^c*Physics Department, University of the Ryukyus, Okinawa 903-0213, Japan*

We present experimental results on magnetotransport in (Y_{1-x}Gd_x)Co₂ alloys, where the localized Gd-moments are coupled antiferromagnetically to the itinerant Co 3d electrons. The alloys are paramagnetic for x < 0.15. The transport properties of the paramagnetic alloys show Kondo like anomalies. On approaching to the magnetic phase boundary the resistivity reveals non-Fermi liquid behaviour, indicating a presence of apparently gap-less magnetic excitations. Large positive magnetoresistivity is observed in the alloys with magnetic ground state at temperatures T < T_c.

23CP10 Gap formation in the semimetal U_2Ru_2Sn : ^{119}Sn NMR investigations

M. Baenitz^a, A. Rabis^a, S. Paschen^a, V.H. Tran^a, F. Steglich^a, P. de V. duPlessis^b, A.M. Strydom^c

^a*MPI für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, D - 01187 Dresden*

^b*Department of Physics, University of the Witwatersrand PO Wits 250, Johannesburg, South Africa*

^c*Department of Physics, Rand Afrikaans University, PO 524, Johannesburg, South Africa*

We report measurements of the ^{119}Sn spin - lattice relaxation rate $1/T_1$ and the Knight shift K for U_2Ru_2Sn . The T dependence of $1/T_1$ is very similar to that of CeNiSn with the only difference that the T scale is increased roughly by a factor of 10. Therefore a first estimate gives a gap value of $\Delta/k_B \approx 140K$ (≈ 14 K for CeNiSn). At low temperatures a $T_1T = constant$ behaviour is observed similar to CeNiSn. Furthermore, measurements on the ^{119}Sn Knight shift, the susceptibility, the specific heat, the electrical resistivity and the Hall coefficient are discussed in the context of a gap formation due to correlations in this semimetal. Investigations on the non-magnetic reference compound Th_2Ru_2Sn are also presented.

23CP11 Photoemission study of $CeTIn_5$ ($T=Rh, Ir$)

S.-i. Fujimori^a, J. Okamoto^a, K. Mamiya^a, T. Okane^a, A. Fujimori^{a,b}, T. Narimura^c, K. Kobayashi^c, K. Shimada^c, H. Namatame^c, M. Taniguchi^c, H. Harima^d, D. Aoki^e, S. Ikeda^f, H. Shishido^f, Y. Tokiwa^g, Y. Haga^g, Y. Ōnuki^{f,g}

^a*Japan Atomic Energy Research Institute, SPring-8, Hyogo 679-5148, Japan*

^b*Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan*

^c*Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan*

^d*Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0043, Japan*

^e*DRFMC-SPSMS, CEA, 38054 Grenoble Cedex 9, France*

^f*Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan*

^g*Advanced Science Research Center, Japan Atomic Energy Research Institute, Ibaraki 319-1195, Japan*

The electronic structures of $CeTIn_5$ ($T=Rh, Ir$) have been investigated by photoelectron spectroscopy.

23CP12 Thermal, magnetic, and transport properties of U_2Ru_2Sn

S. Paschen^a, V. H. Tran^a, N. Senthilkumaran^a, M. Baenitz^a, F. Steglich^a, A. M. Strydom^b, P. de V. du Plessis^c, G. Motoyama^d, N. K. Sato^d

^a*Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany*

^b*Physics Department, Rand Afrikaans University, PO Box 524, Johannesburg, South Africa*

^c*Physics Department, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa*

^d*Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan*

U_2Ru_2Sn shares several properties with the strongly correlated semimetal CeNiSn. Here, we present measurements of thermal, magnetic, and transport properties of both poly- and single-crystalline samples. The specific heat provides evidence for the opening of an energy gap of approximately 160 K. Both the magnetic susceptibility and the electrical resistivity are anisotropic, suggesting that the energy gap opens primarily in the basal plane of the tetragonal compound U_2Ru_2Sn .

High Field Magnetoresistance in Heavy Fermion Superconductor $\text{PrOs}_4\text{Sb}_{12}$ **23CP13**

Hitoshi Sugawara, Shuji Osaki, Eiich Kuramochi, Miki Kobayashi, Shanta R. Saha, Takahiro Namiki, Yuji Aoki, Hideyuki Sato

Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

$\text{PrOs}_4\text{Sb}_{12}$ is recently found to show superconductivity below $T_C=1.85$ K, in which the large specific heat jump at T_C ($\Delta C/T_C \sim 500$ mJ/K²· mol) suggests the strong electronic correlation. We have succeeded in growing high quality single crystals of $\text{PrOs}_4\text{Sb}_{12}$ and measured the magnetoresistance (MR) upto 14 T. The field dependences of transverse MR are found to saturate for the whole field angular directions indicating that this compound is uncompensated metal with the closed Fermi surface. We have found the anomalous high field phase at 4~12 T below 1.25 K which is also found in the specific heat measurements under the magnetic fields.

Thermal Expansion of UCu_2Sn in the Basal Plane**23CP14**

Isao Ishii, Takashi Suzuki, Haruhiro Higaki, Kenichi Katoh, Toshiro Takabatake, Toshizo Fujita
Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

We reported from the elastic moduli experiments that the hexagonal uranium compound UCu_2Sn undergoes a forroquadrupolar ordering of non-Kramers doublet Γ_5 at $T_Q = 16$ K. However, a macroscopic strain has not been measured by a X-ray diffraction experiment because the strain is expected to be smaller than the experimental resolution due to the weak coupling between the strain and order parameters ¹. To detect the spontaneous strain, we carried out a thermal expansion measurement by a capacitance method with higher resolution from 4.2 to 40 K. The thermal expansion in the basal plane shows a remarkable change below T_Q , suggesting the emergence of the ε_{Γ_5} strain which couples to Γ_5 .

¹T.Suzuki *et al.*, Phys. Rev. B **62**, 49 (2000).

Spin fluctuations in heavy-Fermion compounds YbZnCu_4 and YbAuCu_4 , investigated by ^{63}Cu NMR/NQR**23CP15**

Takehide Koyama^a, Takeshi Mito^a, Shinji Wada^a, John L. Sarrao^b

^a*Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan*

^b*Los Alamos National Laboratory, Mail stop K 764, Los Alamos, NM 87545, USA*

We have investigated spin fluctuations of the Yb 4f hole in heavy Fermion compounds close to localized spin regime: YbZnCu_4 ($T_K \simeq 30$ K) and YbAuCu_4 ($T_K \simeq 1.6$ K). The Curie-Weiss-type behavior of both isotropic and anisotropic Knight shifts for each of the compounds is indicative of Yb^{3+} ionic state. Correlation time τ_f of Yb spin fluctuations in YbZnCu_4 is found to be $\sim 10^{-13}$ sec and independent of the temperature for 1.4-100 K, due to an extremely small mixing between f electrons and conduction electron density. While in YbAuCu_4 , the temperature-independent $\tau_f \sim 10^{-12}$ sec at high temperatures begins to decrease around ~ 40 K, and approaches $\sim 10^{-11}$ sec which corresponds to $k_B T_K$ in energy.

23CP16 Observation of cyclotron resonance in CeSb

Mitsuhiro Motokawa^a, Makoto Yoshida^a, Keiich Koyama^a, Takahiro Tomimatsu^a,
Makoto Shirakawa^b, Akira Ochiai^b

^a*Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan*

^b*Center for Low Temperature Science, Tohoku University, Sendai 980-8578, Japan*

Cyclotron resonance measurements on a single-crystal of CeSb have been performed in the temperature range from 1.6 to 20 K in the frequency range from 50 to 110 GHz. We have successfully observed several absorption lines of cyclotron resonance. The estimated effective masses are in the range of 0.28-1.5m₀, and they are compared with the masses estimated from dHvA effect measurements. It is the first observation of cyclotron resonance on strongly correlated *f*-electron systems.

23CP17 Spin-glass Behavior in Ternary Uranium Compound U₂AuGa₃

T. Yamamura, D. X. Li, Y. Shiokawa

Institute of Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan

The magnetic properties of the intermetallic compound U₂AuGa₃ were investigated on well-annealed polycrystalline samples by DC magnetization, specific heat and magnetic relaxation measurements. The temperature dependence of magnetization shows irreversibility and the frozen-in magnetic moment was observed below a characteristic temperature $T_f=23$ K. The temperature dependence of specific heat does not show visible singularity indicating the absence of long-range magnetic order around T_f . Furthermore, more than 50% of the remnant magnetization is observed even after 3 hours due to long-time magnetic relaxation effect. These results clearly indicate that U₂AuGa₃ undergoes spin-glass transition at T_f .

23CP18 Non-Fermi-Liquid Behavior in Amorphous UPd₂Al₃

Takashi Ohno^a, Yutaka Kishimoto^a, Yasuhisa Ushida^b, Yoshiya Homma^c,
Yoshinobu Shiokawa^c, Takashi Nishioka^c, Masaaki Kontani^b

^a*Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan*

^b*Graduate School of Science, Nagoya University, Nagoya 454-8602, Japan*

^c*Institute for Material Research, Tohoku University, Sendai 980-8577, Japan*

These ten years, unusual behaviors in physical quantities different from Fermi liquid state have been reported in many heavy Fermion materials. Some experimental results have been explained from the disorder-induced non-Fermi-liquid theories. To investigate non-Fermi-liquid state further, a crystallographically disordered amorphous UPd₂Al₃ has been prepared. Electrical resistivity and specific heat observed in an amorphous UPd₂Al₃ show anomalous behaviors at low temperatures, which are discussed by connecting with non-Fermi-liquid state and comparing with those observed in a crystalline UPd₂Al₃.

Transport properties of the dense Kondo system $\text{Ce}_{0.5}\text{La}_{0.5}\text{B}_6$ **23CP19**

Shintaro Nakamura^a, Ryo Sato^a, Tsutomu Nojima^a, Haruyoshi Aoki^a, Satoru Kunii^b

^a*Center for Low Temperature Science, Tohoku University, Sendai 980, Japan*

^b*Department of Physics, Tohoku University, Aramaki Sendai 980-8578, Japan*

$\text{Ce}_x\text{La}_{1-x}\text{B}_6$ is well known as a cubic dense Kondo system. The ground crystal electric field state is a Γ_8 which carries both magnetic dipolar and electric quadrupolar moments. No long range ordering have been found in $\text{Ce}_{0.5}\text{La}_{0.5}\text{B}_6$ down to ~ 20 mK under low fields, and an antiferromagnetic or an antiferroquadrupole ordering is induced by applied magnetic fields. We present the transport properties of $\text{Ce}_{0.5}\text{La}_{0.5}\text{B}_6$ at low temperatures. The resistivity of $\text{Ce}_{0.5}\text{La}_{0.5}\text{B}_6$ follows the formula $AT^2 + \text{const.}$ in the low temperature region. This suggests the formation of a strongly correlated Fermi liquid.

Kondo Effect in Two-Dimensional Disordered Systems**23CP20**

Sei-ichiro Suga, Takuma Ohashi

Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan

We investigate the Kondo effect in two-dimensional disordered electron systems on the basis of the single-impurity Anderson model with on-site random potentials. Using a finite-temperature quantum Monte Carlo method, we calculate the susceptibility of a magnetic impurity. Depending on the position of a magnetic impurity, its local moment can be screened or unscreened by the spin of the conduction electron. In the former case, the susceptibility shows a local Fermi-liquid behavior, while in the latter case, the susceptibility shows a power-law or a logarithmic divergence. From the results, we show that the Kondo temperature T_K is distributed more widely and the weight at $T_K = 0$ becomes larger as randomness increases. The average susceptibility shows a weak power-law divergence at low temperature in strongly disordered systems, indicating a non-Fermi liquid behavior.

De Haas - van Alphen effect under pressure in URu_2Si_2 **23CP21**

Miho Nakashima^a, Shugo Ikeda^a, Tomoyuki Okubo^a, Yoshihiko Inada^a, Rikio Settai^a, Hitoshi Ohkuni^a, Etsuji Yamamoto^b, Yoshinori Haga^b, Yoshichika Ōnuki^a

^a*Graduate School of Science, Osaka University, Osaka 560-0043, Japan*

^b*Advanced Science Research Center, Japan Atomic Energy Research Institute, Ibaraki 319-1195, Japan*

A tiny moment of $0.03\mu_B/U$ in URu_2Si_2 is found to increase as a function of pressure and to have a small jump at 1.5 GPa, reaching $0.4\mu_B/U$. The recent NMR experiment claimed that this corresponds to an increase of the antiferromagnetic region with the moment of $0.4\mu_B/U$. We have done the de Haas-van Alphen (dHvA) effect under pressure up to 1.8 GPa. The present dHvA result is inconsistent with the NMR experiment because a new Fermi surface does not appear under the corresponding pressure, indicating a slight increase of the volume of the Fermi surface and a decrease of the cyclotron mass with increasing the pressure.

23CP22 Magnetic-Field Effects on the Pseudogap in CeRhAs

Shunsuke Yoshii^a, Koichi Kindo^a, Tetsuya Sasakawa^b, Toshiaki Suemitsu^b,
Toshiro Takabatake^b

^a*KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531, Japan*

^b*Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan*

The electrical resistivity and magnetization of single crystal CeRhAs, which is the so-called Kondo insulator, have been investigated in magnetic fields up to 55T. In the field region below 20T, anisotropic behaviors are observed in both transport and magnetic properties. Especially, the longitudinal magnetoresistance along the *b* and *c* axes show anomalous drops following with minima, while it decreases monotonically after a broad maximum in the *a* direction. These behaviors may be attributed to the existence of a narrow structure with an anisotropic nature inside the wide pseudogap.

23CP24 NMR Studies of YbB₆

J. L. Gavilano^a, Sh. Mushkolaj^a, D. Rau^a, H. R. Ott^a, A. Bianchi^b, Z. Fisk^b

^a*Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland*

^b*National Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306*

We have performed dc-magnetisation and ¹¹B-NMR measurements on single crystalline YbB₆. The magnetisation data at temperatures between 4 and 300 K reveal the presence of ferromagnetic order with a $T_C > 300K$ and involving very small ordered moments, *i.e.*, $0.002\mu_B/f.u.$ This value represents only a small fraction of the effective paramagnetic moment, per formula unit, that is evidenced in the results for the magnetic susceptibility. The latter can be accounted for by assuming that only 2% of all the Yb atoms adopt the Yb⁺³ configuration. The ¹¹B spin-lattice relaxation rate has a substantial contribution of the form $T_1^{-1}(T) \propto T$ indicating that YbB₆ has a distinct metallic character, somewhat unexpected if it is considered that almost all the Yb ions adopt the divalent configuration.

23CP25 Kondo lattice behaviour of CeNi₉Si₄

Gerfried Hilscher^a, Herwig Michor^a, Ernst Bauer^a, Peter Rogl^b

^a*Institut für Festkörperphysik, Technische Universität Wien, A-1040 Wien, Austria*

^b*Institut für Physikalische Chemie, Universität Wien, A-1090 Wien, Austria*

We have studied the phase formation, thermodynamic and transport properties of ternary compounds $R\text{Ni}_9\text{Si}_4$ ($R = \text{La}$ and Ce) with tetragonal crystal structure (space group $I4/mcm$). For CeNi₉Si₄ resistivity, magnetic susceptibility and specific heat measurements reveal Kondo-lattice properties with a T^2 temperature dependence of the electrical resistivity, $A \sim 0.01\mu\Omega\text{cm}/\text{K}^2$, an enhanced Sommerfeld value $\gamma = 160\text{ mJ/molK}^2$. The Kadowaki-Woods ratio $A/\gamma^2 \sim 0.4 \times 10^{-6}\mu\Omega\text{cm}(\text{molK}/\text{mJ})^2$ indicates weak RKKY coupling of the Ce-moments. The magnetic contribution to the specific heat and the magnetic susceptibility is analysed in terms of the Coqblin-Schrieffer model with a fully degenerate $J = 5/2$ ground state and a characteristic temperature $T_0 \simeq 180\text{ K}$.

Electronic structure and the Fermi surface of UTGa₅ (T=Fe, Co, Rh)**23CP26**Takahiro Maehira^a, Masahiko Higuchi^b, Akira Hasegawa^c^a*Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan*^b*Department of Physics, Tohoku University, Sendai, Miyagi 980-8576, Japan*^c*Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan*

The relativistic augmented plane wave band calculations have been carried out for UFeGa₅, UCoGa₅ and URhGa₅ under the assumption that 5f-electrons are itinerant. The hole sheets of the Fermi surface in the 14th band are all small in size and closed in topology. The electron sheets of the Fermi surface in the 15th band are cylindrical and looks like a lattice-structure surface. The origins of the de Haas-van Alphen frequency branches in UFeGa₅ have been clarified satisfactorily well.

The result for band calculations and the Fermi surface for UCoGa₅ and URhGa₅ is also presented.

High-resolution, low-temperature photoemission spectroscopy of Kondo semiconductor CeRhAs and related compounds**23CP27**Kenya Shimada^a, Kenichi Kobayashi^b, Takamasa Narimura^b, Peter Baltzer^a, Hirofumi Namatame^a, Masaki Taniguchi^a, Toshiaki Suemitsu^c, Tetsuya Sasakawa^c, Toshiro Takabatake^c^a*Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-8526, JAPAN*^b*Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, JAPAN*^c*Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8526, JAPAN*

We present and discuss the Ce 4f derived electronic states near the Fermi level of the Kondo semiconductor CeRhAs, the Kondo semimetal CeRhSb, and the Kondo metal CePtSn obtained by high-resolution ($\Delta E = 16\text{-}20$ meV), low-temperature (10-12 K) resonant photoemission spectroscopy with a photon energy of $h\nu = 122\text{-}126$ eV.

Temperature Dependent Hyperfine Interactions in CePdAl**23CP28**Akira Oyamada^a, Masahide Nishiyama^a, Kazuo Kamioka^a, Satoru Maegawa^a, Takao Goto^a, Hideaki Kitazawa^b^a*Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501 Japan*^b*National Institute for Materials Science, Tsukuba, 305-0047 Japan*

Nuclear Magnetic Resonance have been performed to study hyperfine interactions in CePdAl. The temperature dependence of Knight shift(K) and susceptibility(χ) is highly anisotropic as expected from its crystal structure. Non-linearity of $K - \chi$ plot was observed only when the magnetic field was perpendicular to c-axis. Two dimensional short range correlations are discussed.

23CP29 Fermi surface of the periodic Anderson model by momentum-resolved charge compressibility

Y. Otsuka^a, Y. Hatsugai^b

^a Department of Applied Physics, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan

^b Dept. of Applied Physics Univ. of Tokyo and PRESTO, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

We investigate a Fermi surface of the periodic Anderson model by the finite temperature quantum Monte Carlo method. Although the Luttinger sum rule predicts the system has a large Fermi surface (at $T = 0$) which contains both conduction and f electrons, the momentum distribution function $n(k)$ at a finite temperature shows large change at a small Fermi surface which contains only the conduction electrons without the f electrons and a clear signature of the large Fermi surface is not easily observed. On the other hand, the momentum-resolved compressibility $\frac{dn(k)}{d\mu}$ which reflects effects of an infinitesimal doping shows a peak structure at the large Fermi surface even at an easily accessible temperature.

23CP30 Neutron-Diffraction Study of the Unusual Ordered Phases of Ce_{0.75}La_{0.25}B₆

Kazuaki Iwasa^a, Keitaro Kuwahara^a, Masahumi Kohgi^a, Peter Fischer^b, Andreas Dönni^b, Thomas C. Hansen^c, Satoru Kunii^d

^aDepartment of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

^bETH Zurich & Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

^cInstitut Laue-Langevin, 38042 Grenoble Cedex 9, France

^dDepartment of Physics, Tohoku University, Sendai 980-8578, Japan

Ce_{0.75}La_{0.25}B₆ shows paramagnetic phase (phase I), 4f-electron quadrupolar ordered phase (II), magnetically ordered phase (III), and unknown phase IV. In order to investigate order parameters in these phases, neutron diffraction experiments have been performed down to 74 mK. The order parameter in phase IV is not a magnetic dipole, and magnetic structure in phase III is different from that previously suggested for CeB₆ (Effantin *et al.*). These facts indicate an importance of 4f-electron multipole effect.

23CP31 The Coexistence of Magnetism and Superconductivity in CeRhIn₅

Donavan Hall^a, S. W. Tozer^a, E. C. Palm^a, T. P. Murphy^a, R. G. Goodrich^b, J. L. Sarrao^c

^aNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA

^bLouisiana State University, Baton Rouge, LA, USA

^cLos Alamos National Laboratory, Los Alamos, NM, USA

The heavy fermion system CeMIn₅, where M is either Rh, Ir, or Co exhibits the coexistence of magnetism and superconductivity. CeRhIn₅ has an antiferromagnetic ground state giving way through a first order phase transition to a superconducting state with a critical temperature of 2.2 K under the application of 16 kbar of pressure. We have measured the evolution of the Fermi surface of CeRhIn₅ as a function of pressure. Experimental methods and results will be presented.

Metamagnetic transistions in the Heavy Fermion Superconductors CeIrIn₅ and CeCoIn₅

23CP32

E. C. Palm^a, T. P. Murphy^a, Donavan Hall^a, S. W. Tozer^a, R. G. Goodrich^b, J. L. Sarrao^c

^a*National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA*

^b*Louisiana State University, Baton Rouge, LA, USA*

^c*Los Alamos National Laboratory, Los Alamos, NM, USA*

The recently discovered heavy fermion materials CeMIn₅, where M is either Rh, Ir, or Co have proven to be an interesting class of materials with a rich phase diagram involving magnetism and superconductivity. In particular the superconductivity in CeIrIn₅ and CeCoIn₅ occurs at ambient pressure with transition temperatures of 0.4 K and 2.3 K respectively. We will present data taken at temperatures from 20 mK and DC magnetic fields up to 45 T on the metamagnetic transitions in these materials and the effects on the fermi surface determined by dHvA measurements both below and above the metamagnetic transitions.

Spin Fluctuations on YbRh₂Si₂ in the Vicinity of a Quantum-Critical Point Revealed by ²⁹Si NMR

23CP33

K Ishida^{*a}, K Okamoto^a, Y Kawasaki^a, Y Kitaoka^a, O Trovarelli^b, C Geibel^b, F Steglich^b

^a*Department of Physical Science, Osaka Univ., Toyonaka, Osaka 560-8531, Japan*

^b*MPG for Chemical Physics of Solids, D-01187 Dresden, Germany*

We report a ²⁹Si NMR study on aligned single crystals of YbRh₂Si₂ shows behavior characteristic of the system of the vicinity of a quantum critical point (QCP: $T_N \rightarrow 0$). K and $1/T_1T$ of Si show a strong dependence on the external field H , especially below 5 kOe. At the lowest field used in this measurement ($H \sim 1.5$ kOe), it was found that $1/T_1T$ continues to increase down to 50 mK, whereas K stays constant with a large magnitude below 200 mK. This result strongly suggests the development of antiferromagnetic fluctuations with finite q vectors that compete with $q = 0$ spin fluctuations in the vicinity of the QCP near $H = 0.5$ kOe. *Present address: Dept. of Phys. Kyoto Univ. Kyoto 606-8502, Japan.

Instability of RKKY-type long-range order in Kondo-lattice compound Ce(Ru_{0.9}Rh_{0.1})₂(Si_{1-y}Ge_y)₂ as studied by neutron diffraction

23CP34

Shuzo Kawarazaki^a, Kenji Watanabe^a, Yoshiya Uwatoko^b, Hiroaki Kadowaki^c,

Yoshikazu Tabata^a, Toshifumi Taniguchi^a, Chikahide Kanadani^a

^a*Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan*

^b*Institute for Solid State Physics, The University of Tokyo, Kashiwa-shi, Chiba 277-8581, Japan*

^c*Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan*

Neutron diffraction measurements have been made to study the response of the magnetic order of the heavy-fermion compound Ce(Ru_{0.9}Rh_{0.1})₂(Si_{1-y}Ge_y)₂ to hydrostatic pressure and to the chemical-pressure. With changing the Ge concentration, both of the magnitude of the magnetic moment and the value of the wave number show rapid change at around $y=0.08$. The 3rd harmonic component of the modulation of the $y=0.2$ compound clearly exhibits localized-electron nature at low temperature.

23CP35 Specific heat study of non-Fermi liquid behavior in $\text{Ce}_x\text{La}_{1-x}\text{Pd}_2\text{Al}_3$

Shijo Nishigori^a, Masaru Katsube^b, Takashi Ito^b, Akiyuki Matsushita^c

^a*Instrumental Analysis Center, Shimane University, Matsue 690-8504, Japan*

^b*Department of Material Science, Shimane University, Matsue 690-8504, Japan*

^c*National Institute for Materials Science (NIMS), Tsukuba, 305-0047, Japan*

We have measured specific heat of $\text{Ce}_x\text{La}_{1-x}\text{Pd}_2\text{Al}_3$ ($0 \leq x \leq 1.0$) from 0.4 to 100 K. The magnetic specific heat normalized to a mole of Ce divided by temperature, C_m/T , for $x = 1.0$ shows a peak at 3.0 K which is attributed to the antiferromagnetic (AF) transition. With decreasing x , the peak shifts to lower temperatures. For $x = 0.7$, a logarithmic divergence in C_m/T is observed below 7 K simultaneously with the disappearance of AF transition. This suggests that the non-Fermi liquid behavior appears due to the magnetic instability. With further decreasing x , C_m/T shows the same temperature dependence as that for $x = 0.7$ in the wide Ce concentration range down to $x = 0.3$.

23CP36 Magnetic Excitations in uranium based 5f systems

Naoto Metoki^{a,b}, Yoshihiro Koike^{a,c}

^a*Advanced Science Research Center, JAERI, Tokai, Ibaraki 319-1195, Japan*

^b*Graduate School of Science, Tohoku University, Sendai 980-8577, Japan*

^c*Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan*

We will review the results of our recent inelastic neutron scattering studies on uranium based intermetallic compounds. The high energy response is strongly dependent on the nature of $5f$ electrons. We observed clear cross over from localized to itinerant regime, namely distinct spin wave, crystalline electric field, and J -multiplet were observed in a localized system, while broad magnetic continuum with opening gap below T_N would be a signature for the itinerant $5f$ character. The existence of a quasi-elastic response would be the evidence for the quasi-particles even in a localized system.

23CP37 de Haas-van Alphen Effect on CeRh_3B_2

Yoshihiko Inada, Almgham Thamizhavel, Shingo Krita, Tomoyuki Ohkubo, Mineko Yamada, Yoshichika Ōnuki

Graduate School of Science, Osaka University, Toyonaka, 560-0043 Japan

CeRh_3B_2 has the highest Curie temperature of 115 K in all the cerium compounds, although a saturation moment is only about $0.4\mu_B/\text{Ce}$ being much smaller than the moment based on the crystalline electric field. It is important to reveal whether the $4f$ electron has the itinerant character or not and the role of Rh d band in this compound.

We succeeded in growing high-quality single crystals of CeRh_3B_2 , and in observing the de Haas-van Alphen (dHvA) effect. The dHvA frequencies are in the range from $400 \sim 2000$ T and some branches indicate the existence of closed Fermi surfaces.

^{11}B NMR Study in the Antiferromagnetic Phase III of $\text{Ce}_{0.75}\text{La}_{0.25}\text{B}_6$ **23CP38**

Kiyoshi Mizuno^a, Ko-ichi Magishi^a, Masayuki Kawakami^b, Takahito Saito^a,
Kuniyuki Koyama^a, Satoru Kunii^c

^a*Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan*

^b*Department of Physics, Kagoshima University, Kagoshima 890-0065, Japan*

^c*Department of Physics, Tohoku University, Sendai 980-8578, Japan*

We have carried out the ^{11}B NMR experiments on a single crystalline sample of $\text{Ce}_{0.75}\text{La}_{0.25}\text{B}_6$ in order to elucidate the magnetic structure of the antiferromagnetic phase III and compare with the result of CeB_6 . It is very important to investigate the magnetic property in phase III neighboring the unknown phase IV. In phase III, the spectrum is well reproduced by Sakai model, which reproduces the spectrum in phase III of CeB_6 . It suggests that phase III of $\text{Ce}_{0.75}\text{La}_{0.25}\text{B}_6$ is similar to that of CeB_6 . The more detailed experiments and analyses are now in progress. We will report those results at the presentation.

One-Loop Corrections to the Susceptibility and the Specific Heat in the Periodic Coqblin-Schrieffer Model**23CP39**

Keiichi Ohara^a, Katsurou Hanzawa^b

^a*Kurashiki City College, Kurashiki 711-0911, Japan*

^b*Tokyo University of Science, Noda 278-8510, Japan*

The periodic Coqblin-Schrieffer model with isotropic hybridization is investigated in the one-loop approximation for the half-filled case in terms of the functional integral formalism. We determine the order parameter corresponding to heavy fermion state and calculate the thermodynamic quantities such as susceptibility and specific heat. We discuss the fluctuation effects to the thermodynamic quantities comparing with the results obtained in the mean-field approximation.

 μSR Study of Magnetism of CeRh_2Si_2 under High Pressure**23CP40**

Wataru Higemoto^a, Kazuhiko Satoh^b, Atsushi Hanaoka^b, Akihiro Koda^a, Kusuo Nishiyama^a,
Koichiro Shimomura^a, Ryosuke Kadono^a, Sadayoshi Koiwai^b, Yoshiya Uwatoko^c,
Nobuo Mori^b

^a*Institute of Materials Structure Science, KEK, Ibaraki 305-0801, Japan*

^b*Department of Physics, Saitama University, Saitama 338-8570, Japan*

^c*Institute of Solid State Physics, University of Tokyo, Chiba 277-8581, Japan*

CeRh_2Si_2 shows two antiferromagnetic transitions at ambient pressure ($T_{N1}=36\text{K}$ and $T_{N2}=27\text{K}$). Application of pressure suppresses T_N to 0K at $P_c \sim 1\text{GPa}$. We study the magnetism of the single crystalline sample of CeRh_2Si_2 by μSR method up to 0.4GPa . At $T < T_{N2}$, we observed both the spontaneous muon spin precession and the fast muon spin relaxation under a zero magnetic field. Although the transition temperature decreases with increasing the pressure, the precession frequency, which is proportional to the saturated sublattice magnetic moment, is nearly independent on the pressure.

23CP41 Effect of Pressure on $\text{Yb}_{1-x}\text{Y}_x\text{InCu}_4$ with First-order Valence Transition

Wei Zhang^a, Kazuyoshi Yoshimura^a, Akihiro Mitsuda^b, Nikolay V. Mushnikov^b,
Tsuneaki Goto^b

^aDepartment of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

^bInstitute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

At transition temperature ($T_v \approx 42$ K) YbInCu_4 exhibits a first-order isostructural valence transition from Yb^{3+} free ion state at high temperature (HT) with Kondo temperature $T_K^H = 25$ K to intermediate valence state ($\text{Yb}^{2.9+}$) at low temperature (LT) with Kondo temperature $T_K^L = 400$ K. In LT phase this transition also can be induced by high magnetic field with transition magnetic field ($H_v \approx 33$ T) or by pressure with transition pressure ($P_v \approx 20$ kbar). Although the $\text{Yb}_{1-x}\text{Y}_x\text{InCu}_4$ system make the lattice parameter of YbInCu_4 increase with the Y substitution, it shows a steep decrease of T_v and H_v , resulting in suppression of the valence transition around $x = 0.3$. The effect of pressure on $\text{Yb}_{1-x}\text{Y}_x\text{InCu}_4$ will be reported.

23CP42 Pressure effect on transport properties in heavy Fermion semimetal $\text{CeRu}_4\text{Sb}_{12}$

Miki Kobayashi, Shanta R. Saha, Hitoshi Sugawara, Takahiro Namiki, Yuji Aoki,
Hideyuki Sato

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

$\text{CeRu}_4\text{Sb}_{12}$ has been reported to exhibit Non-Fermi-liquid (NFL) behavior at low temperatures [1]. The origin has not yet been clarified. Based on the transport and Shubnikov-de Haas (SdH) experiments, Fermi surface (FS) is large at high temperatures similar to $\text{LaRu}_4\text{Sb}_{12}$ [2], while at low temperatures it becomes a small semi-metallic one with highly enhanced effective mass. In order to understand such exotic behaviors, we have investigated the effect of pressure on the transport properties including the direct observation of FS using SdH effect. NFL behavior is easily destroyed both by magnetic field and pressure, though the pressure effect is minor at high temperatures. The SdH experiment under uniaxial pressure revealed that the nearly spherical FS is elongated along the pressure direction. [1] N. Takeda and M. Ishikawa: J. Phys. Soc. Japan **69** (2000) 868. [2] K. Abe et al.: to be published in *Physica B*.

23CP43 Anomalous Hall Effect in Heavy Fermion Compounds Ce_2TIn_8 ($T = \text{Rh}$ or Ir)

Isao Sakamoto, Yoshinobu Shomi, Shigeo Ohara

Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Ce_2RhIn_8 and Ce_2IrIn_8 are newly-found heavy fermion compounds. These materials are crystallized in the tetragonal Ho_2CoGa_8 -type structure where the 2-layers of CeIn_3 and a layer of RhIn_2 or IrIn_2 are piled up alternately along the c -axis. We have grown a series of compounds $R_2T\text{In}_8$ in single crystal form, where $R = \text{La}$, Ce or Pr , and $T = \text{Rh}$ or Ir . The measurements of the magnetic susceptibility, the electrical resistivity and the Hall effect were performed in the temperature range between 2-300 K. In this contribution, we report the anomalous Hall effect in Ce_2TIn_8 , compared with the data for the isostructural non-magnetic La_2TIn_8 and paramagnetic Pr_2TIn_8 which posses a singlet ground state.

Magnetic and Fermi Surface Properties of UTGa₅ (T : Fe , Co and Pt)**23CP44**

Shugo Ikeda^a, Yoshihumi Tokiwa^a, Tomoyuki Ōkubo^a, Mineko Yamada^a, Tatuma D. Matuda^b, Yoshihiko Inada^a, Rikio Settai^a, Etuji Yamamoto^b, Yoshinori Haga^b, Yoshichika Ōnuki^a

^a*Graduate School of Science, Osaka University, Toyonaka, Osaka 560-00 43, Japan*

^b*Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan*

We succeeded in growing a high-quality single crystal of the UTGa₅ (T : Fe, Co and Pt) by the self-flux method, and measured the de Haas-van Alphen (dHvA) effect, together with the electrical resistivity, magnetoresistance, magnetic susceptibility and specific heat. Reflecting the unique tetragonal crystal structure, the Fermi surface in a paramagnet UFeGa₅ and an antiferromagnet UPtGa₅ consist of cylindrical Fermi surfaces and a lattice like Fermi surface. On the other hand, UCoGa₅ is the semimetal where Fermi surface consists of small closed Fermi surfaces.

Effect of Pressure on the Electrical Resistivity of Heavy Fermion Antiferromagnet Ce₂RhIn₈**23CP45**

Shigeo Ohara, Yoshinobu Shomi, Isao Sakamoto

Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

The heavy fermion family Ce_nRhIn_{3n+2} have attracted much attention since the CeIn₃ (n=∞) and CeRhIn₅ (n=1) become superconductors under high pressure. Ce₂RhIn₈, which is the n=2 member of this family, is a heavy fermion antiferromagnet, $T_N=2.8$ K. We have grown a single crystal of Ce₂RhIn₈ and measured the electrical resistivity under high pressures up to 16 kbar in temperature range 1.5-300 K. At ambient pressure, the resistivity of Ce₂RhIn₈ increases logarithmically with decreasing temperature until it reaches a maximum at 5 K and show a shoulder at T_N . It is found that the resistive signature for T_N decreases with pressure. At 16 kbar, magnetic order is not observed down to 1.5 K.

Scanning SQUID microscopy of superconducting La_{2-x}Sr_xCuO₄ single crystals**23CP46**

Kazuyuki Isawa^a, Mitsugu Nagano^a, Kazuhiko Ikeuchi^b, Kazuyoshi Yamada^b

^a*Research and Development Center, Tohoku Electric power Co., Inc., 2-1 Nakayama 7-chome, Aoba-ku, sendai, 981-0952, Japan*

^b*Institute of Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan*

The recent report on the existence of diamagnetic domains in La_{2-x}Sr_xCuO₄ (LSCO) thin films above T_c was stimulating, though the phenomena was not observed in successive measurements on bulky specimens. To clinch the controversy, we have measured local magnetic images of LSCO single crystals utilizing scanning SQUID microscope. For the LSCO single crystals with x=0.14-0.16, the vortex patterns were clearly observed at 3K. These patterns persisted up close to T_c, though they totally diminished at temperatures above 40K. Measurements on the underdoped and highly overdoped samples are in progress.

23CP47 Effect of orbital degeneracy on magnetic phases of electron-doped manganites

Sergey M. Dunaevsky, Vladimir V. Deriglazov

Petersburg Nuclear Physics Institute, Gatchina 188300, Russia

The total energies for various magnetic structures of electron doped manganites are evaluated using energy bands $E(\mathbf{k})$ accounting for the orbital degeneracy of e_g -band of manganese for the main A -, C - and G -types of antiferromagnetic ordering. To determine the magnetic configuration, minimization of the ground state energy with respect to the canting angle between the spins of Mn^{4+} -ions of the two magnetic sublattices has been performed. It appeared that in the case of complete degeneracy of e_g -orbital the calculated magnetic phase diagrams fail to explain the experimentally observed arrangement of magnetic phases. The account of rather small splitting of e_g -level drastically changes the phase diagrams retrieving their compatibility with experimental observations in the realistic region of parameters even in the collinear approximation.

23CP48 Scanning SQUID Microscopy on composition-spread NdSrMnO films under irradiation

Hidetaka Sugaya^a, Tae-Youb Kim^b, Jun Nishimura^a, Tomoteru Fukumura^c,

Masashi Kawasaki^c, Hideomi Koinuma^a, Yoshinori Tokura^d, Tetsuya Hasegawa^a

^a*Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan*

^b*COMET, Advanced Materials Lab., National Institute for Materials Science, Tsukuba 305-0044, Japan*

^c*Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577, Japan*

^d*Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan*

Local magnetic properties of composition-spread $Nd_{1-x}Sr_xMnO_3$ (NSMO; $x=0.4-0.6$) films were surveyed by a scanning SQUID microscope under irradiation. We have found that the spontaneous magnetization of the FM phase is drastically enhanced by the laser irradiation ($\lambda=532\text{nm}$), while that of the CO region is rather unchanged.

23CP49 Magnetic inhomogeneity effects in DC transport properties and microwave absorption of $\text{La}_{0.5}\text{Sr}_{0.5}\text{CoO}_{3-\delta}$ film

Boris I. Belevtsev^a, Nickolay T. Cherpak^b, Irina N. Chukanova^c, Alexey I. Gubin^b, Vitaliy B. Krasovitsky^a, Alexander A. Lavrinovich^b

^a*B. Verkin Institute for Low Temperature Physics & Engineering, Kharkov, 61103, Ukraine*

^b*A. Usikov Institute for Radiophysics & Electronics, Kharkov, 61085, Ukraine*

^c*Institute for Single Crystals, Kharkov, 61001, Ukraine*

Transport properties in a PLD $\text{La}_{0.5}\text{Sr}_{0.5}\text{CoO}_{3-\delta}$ film are studied by DC and microwave (41 GHz) technique. It is found that the microwave conductivity increases by the order of the magnitude at the transition to the ferromagnetic state. This is accompanied by only 10 % increase in the DC conductivity. This effect and the DC magnetoresistance data obtained are discussed considering the extrinsic and intrinsic sources of magnetic inhomogeneity in doped cobaltates, including the phase separation.

Structure and electromagnetic properties in thin films of $\text{Pr}_{0.65}\text{Ca}_{0.35}\text{MnO}_3$ **23CP50**

Masato Arai^a, Takahiro Nakayama^a, Osami Yanagisawa^b, Mitsuru Izumi^a

^a*Laboratory of Applied Physics, Tokyo University of Mercantile Marine, 2-1-6 Etchu-jima, Koto-ku, Tokyo 135-8533, Japan*

^b*Yuge National College of Maritime Technology, Yuge, Ochi-gun, Ehime 794-2593, Japan*

We have studied the ESR on the photo-induced phase transition of $\text{Pr}_{0.65}\text{Ca}_{0.35}\text{MnO}_3$ in the canted antiferromagnetic state ¹. Presently we report the magnetic property of the thin film of $\text{Pr}_{0.65}\text{Ca}_{0.35}\text{MnO}_3$ prepared with RF magnetron sputtering. Structurally, according to X-ray diffraction, high quality thin films were obtained on LaAlO_3 substrate at 850 °C with Ar/O_2 mixture gas atmosphere. They are ferrimagnet and the sample after long time deposition clearly shows the sign of charge-order formation. These properties are discussed comparatively with their bulk materials.

¹O. Yanagisawa et al.: *J. Superconductivity*, 12, 311 (1999).

Fabrication of LBMO films and Magnetic Properties at Low Temperatures**23CP51**

Kouji Yoshii, Shin-ichi Iwasaki, Masaki Tada, Gufran Ahmad, Tamio Endo

Faculty of Engineering, Mie University, Tsu, Mie 514-8507, Japan

Thin films of $(\text{La},\text{Ba})\text{MnO}_3$ were deposited by IBS at various substrate temperatures T_s and oxygen partial pressures P_o . Magnetic properties were investigated in terms of SQUID, magnetoresistance and ferromagnetic resonance (FMR). The various samples were characterized by FMR at 77 K. Effective magnetization M of the samples deposited at $T_s=750^\circ\text{C}$ is larger for $P_o=1.5$ than for 0.5 mTorr. Peak half width Γ is larger for 0.5 than for 1.5 mTorr, then the stronger magnetic and more homogenous film can be fabricated at 1.5 mTorr. $\Gamma\parallel$ is larger than $\Gamma\perp$. After annealing, M is increased, and the magnitudes of $M\perp$ and $M\parallel$ are converted to $M\perp > M\parallel$. The annealing affects seriously on in-plane and out-of-plane magnetization properties. The optimum annealing condition is $875^\circ\text{C} \rightarrow 800^\circ\text{C}$ to increase $M\perp$. The magnetic homogeneity can be remarkably improved by the annealing both for $H\parallel$ and $H\perp$.

Temperature Dependence of FMR in La-Ba-Mn-O Thin Films**23CP52**

Shin-ichi Iwasaki, Masaki Tada, Jiro Yamada, Youichiro Inamori, Tamio Endo

Faculty of Engineering, Mie University, Tsu, Mie 514-8507, Japan

$(\text{La},\text{Ba})\text{MnO}_3$ thin films were fabricated by IBS. Ferromagnetic resonance (FMR) was measured on as-deposited and annealed samples at various temperatures (T). The resonance fields H_r , peak half widths Γ and magnetizations M were obtained for $H\parallel$ plane and $H\perp$ plane. The as-deposited film and the annealed film at 900°C in O_2 showed FMR from 77 K to $T_C=175$ K and 185 K. In the annealed sample, $H_r\perp$ is larger than $H_r\parallel$ at 77 K due to demagnetization. $H_r\perp$ decreases while $H_r\parallel$ increases with increasing T , and finally they merge. $M\perp$ is larger than $M\parallel$, and they decrease with increasing T . $\Gamma\parallel$ is larger than $\Gamma\perp$, then spins are more distributed in $H\parallel$ than in $H\perp$. $\Gamma\parallel$ monotonically decreases with increasing T , then widely-distributed spins die out and only in-plane oriented spins are kept alive. While $\Gamma\perp$ once decreases then increases due to activated thermal fluctuation of remnant spins.

23CP53 Field Induced Magneticstructure Transisiton of LaSrFeO₄

Hirofumi Kawanaka^a, Hiroshi Bando^a, Kazuyoshi Mitsugi^a, Akifumi Sasahara^b,
Yoshikazu Nishihara^b

^a*National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan*

^b*Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan*

We report the magnetic transition studies on LaSrFeO₄. Single crystal of LaSrFeO₄ prepared by the floating-zone method and investigated by resistivity, magnetic susceptibility, and Mössbauer effect measurements. The crystal structure of LaSrFeO₄ is K₂NiF₄-type tetragonal (I4/mmm) symmetry. LaSrFeO₄ is a Mott-type antiferromagnetic semiconductor with multi phase transition. The Mössbauer spectra at room temperature consist of a single Fe³⁺ hyperfine sextets which are evidence for magnetically ordered phase. Furthermore we found the spin flop at 1.8 Tesla, T = 5 K in magnetization process, and make clear the magnetic ground state has [1 1 0] and [-1 1 0] direction spin order in the c plane.

23CP54 Non-linear conduction in the charge-disportionated phase of La_{1/3}Sr_{2/3}FeO₃

Noriya Ichikawa, Masamichi Yamamoto, Takahito Terashima, Mikio Takano

Institute for Chemical Research, Kyoto University, 611-0011, Gokasho, Uji, Kyoto-Fu, JAPAN

In the perovskite La_{1/3}Sr_{2/3}FeO₃ charge disproportionation (CD) occurs at 200K: 3Fe^{11/3+} → 2Fe³⁺ + Fe⁵⁺. Various studies indicate that in the CD phase there exist layered spin and charge order stacking along [111]_{cubic} direction, which can be regarded as a coupled spin density wave (SDW) and charge density wave (CDW). To investigate the nature of the CDW, we measured resistivity at pulsed high electric field up to 2000V/cm; special care was taken to eliminate the self-heating effect by choosing the thin film sample and by micro-fabrication with the focused ion beam technique. Current-voltage characteristics showed non-linear behavior (above 1000V/cm at 170K) only in CD phase and the threshold field E_{th} increases as temperature is reduced. Other phenomena for depinned CDW like negative differential resistivity and delay in pulse wave form were also observed. These suggest a collective motion in the present system.

23CP55 Specific Heat Studies on the Charge and Magnetic Ordering in Manganites

H. D. Yang^a, H. L. Huang^a, P. L. Ho^a, W. L. Huang^a, C. W. Huang^a, S. J. Liu^b, J. Y. Lin^c

^a*Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC*

^b*Department of Electrophysics, National Chiao-Tung University, Hsin-Chu 300, Taiwan, ROC*

^c*Institute of Physics, National Chiao-Tung University, Hsin-Chu 300, Taiwan, ROC*

Specific heat studies with a wide range of temperatures (T=30 - 300 K) on manganites Pr_{0.65}Ca_{0.25}Sr_{0.1}MnO₃ (PCSMO) and Nd_{0.125}Sm_{0.375}Sr_{0.5}MnO₃ (NSSMO) are reported. Both CO and AFM transitions in PCSMO and NSSMO can be clearly observed in specific heat data. However, the specific heat anomaly associated with the ferromagnetic (FM) ordering transition, which is usually corresponding to the MI transition, in both materials is not definitely determined. The possible explanations are discussed on the basis of whether the FM ordering is metastable or not.

Pressure induced ferromagnetic metal for a Mott insulator Ca_2RuO_4 **23CP56**

F. Nakamura^a, T. Goko^a, M. Ito^a, T. Suzuki^a, T. Fujita^a, S. Nakatsuji^b, H. Fukazawa^b, Y. Maeno^b, P. Alireza^c, S.R. Julian^c

^a*ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 Japan*

^b*Department of Physics, Kyoto University, Kyoto 606-8502, Japan*

^c*Cavendish Laboratory, University of Cambridge, Cambridge, UK*

We found a Mott insulator Ca_2RuO_4 features a metal-insulator transition at $P \sim 0.5$ GPa: at 300K from paramagnetic insulator to paramagnetic quasi-2D metal; at $T \leq 12$ K from AFM insulator to FM 3D metal. The P -phase diagram, especially the itinerant FM, is quite unique to our knowledge. We discuss the importance of structural distortions, which are expected to couple strongly to P . Moreover, our results suggest the induction of a FM quantum critical point at $P \leq 10$ GPa. We have strong interest in the connection between the p-wave superconductor Sr_2RuO_4 , and the FM of metallic Ca_2RuO_4 .

Crystal Structures and Magnetic Properties of the Double Perovskite $(\text{Ca}_{2-2x}\text{Sr}_{2x})\text{FeMoO}_6$ **23CP57**

J. B. Shi^a, Y. Y. Fan^a, P. H. Peng^a, F. C. Jou^a, C. Y. Lee^a, H. C. Ku^b, S. L. Young^c, H. Z. Chen^c

^a*Department of Electronic Engineering, Feng-Chia University, Taichung 407, Taiwan.*

^b*Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan.*

^c*Department of Electrical Engineering, Shiuping Institute of Technology, Taichung 412, Taiwan.*

Chemical size effect on structural and magnetic properties in $(\text{Ca}_{2-2x}\text{Sr}_{2x})\text{FeMoO}_6$ has been examined. The compounds crystallize in the monoclinic system for $0.0 \leq x < 0.2$, the orthorhombic for $0.2 \leq x < 0.4$ and the tetragonal for $0.4 \leq x$. The Curie temperature T_C increases with increasing x from 318 K ($x=0.0$) to 393 K ($x=1.0$). At 82 K, the saturation magnetization of all samples remains $M_S \leq 3.5\mu_B/\text{formula unit}$ compared to a theoretical spin-only moment $4\mu_B/\text{formula unit}$ for a perfectly ordered compound. This discrepancy is probably due to a slight disorder and valence-fluctuation between the Fe and Mo atoms.

Structure and magnetic properties of $\text{BaFeO}_{3-\delta}$ studied by neutron scattering measurements**23CP58**

Kazuhiko Mori^a, Takashi Kamiyama^a, Hisao Kobayashi^b, Toshiya Otomo^a, Susumu Ikeda^a

^a*Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan*

^b*Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan*

It is reported that $\text{BaFeO}_{3-\delta}$ with an average oxidation state of +4 shows a decrease of Fe^{4+} concentration at low temperature, from a result of Mössbauer measurements. It implies that a charge disproportionation of Fe^{4+} , $2\text{Fe}^{4+} \rightarrow \text{Fe}^{3+} + \text{Fe}^{5+}$, occurs in this system. In this work, we have investigated the structure and the magnetic properties of $\text{BaFeO}_{3-\delta}$ using neutron scattering measurements. A drastic distortion of $[\text{FeO}_6]$ octahedra is observed around 180 K. The occurrence of the drastic distortion agrees well with the result of Mössbauer measurements.

23CP59 Charge and Orbital Ordered States in $\text{Nd}_{1-x}\text{Sr}_{1+x}\text{MnO}_4$ ($x = 0.67, 0.75$)

Hironori Nakao^a, Tadashi Satoh^a, Junko Satoh^a, Youichi Murakami^a, Masato Kubota^b, Tsuyoshi Kimura^c, Yoshinori Tokura^c

^aDepartment of Physics, Tohoku University, Sendai 980-8578, Japan

^bPhoton Factory, Institute of Materials Structure Science, KEK, Ibaraki 305-0801, Japan

^cDepartment of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan

The charge and orbital ordered states in the single-layered manganite crystals, $\text{Nd}_{1-x}\text{Sr}_{1+x}\text{MnO}_4$ ($x = 0.67, 0.75$), have been investigated. We have observed the superlattice spots of wave vector with $q = (\delta, \delta, 0)$, $\delta \sim \frac{1}{6}$ ($\frac{1}{8}$) in $x = 0.67$ ($x = 0.75$) by non-resonant x-ray scattering, which indicate atomic displacements induced by the charge-orbital ordering. To distinguish the charge-orbital states of Wigner-crystal and bi-stripe models, the resonant x-ray scattering technique were utilized at the q positions.

23CP60 μ SR Study of Magnetic Order in $\text{Sr}_2\text{Ru}_{1-x}\text{Ti}_x\text{O}_4$

G.M. Luke^a, M.T. Rovers^a, P.P. Kyriakou^a, I.M. Gat^b, M.I. Larkin^b, A.T. Savici^b, Y.J. Uemura^b, K.M. Kojima^c, N. Kikugawa^d, Y. Maeno^e

^aDept. of Physics & Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada

^bDept. of Physics, Columbia University, New York, NY 10027, USA

^cDept. of Advanced Materials Science, University of Tokyo, Bunkyo-ku, Tokyo 113-7656, Japan.

^dDept. of Physics and Venture Business Lab., Kyoto University, Kyoto 606-8502, Japan

^eDept. of Physics and International Innovation Center, Kyoto University, Kyoto 606-8502, Japan

Sr_2RuO_4 is an unconventional superconductor with $T_c = 1.5$ K which is extremely sensitive to even non-magnetic impurities. We have performed muon spin relaxation (μ SR) measurements of $\text{Sr}_2\text{Ru}_{1-x}\text{Ti}_x\text{O}_4$. For $x = 0.01, 0.03$ we observe weak dilute spin freezing, similar to that seen in nominally pure but non-superconducting Sr_2RuO_4 while with $x = 0.09$ we observe spin glass freezing below $T_g \approx 15$ K.

23CP61 Electronic Transport of Bilayer Manganite $\text{La}_{1.2}\text{Sr}_{1.8}\text{Mn}_2\text{O}_7$ Single Crystal

C. C. Almasan^a, X. J. Chen^a, C. L. Zhang^a, J. S. Gardner^b, J. L. Sarrao^b

^aDepartment of Physics, Kent State University, Kent OH 44242, USA

^bLos Alamos National Laboratory, Los Alamos NM 87545, USA

We report magnetoresistivity measurements on a $\text{La}_{1.2}\text{Sr}_{1.8}\text{Mn}_2\text{O}_7$ single crystal. The charge transport in the ferromagnetic phase is dominated by two-magnon scattering in the high T range and by weak localization effects at lower T , in the non-metallic regime. In the paramagnetic phase, $\rho_{ab}(T)$ obeys the adiabatic small polaron hopping mechanism, while $\rho_c(T)$ follows an Arrhenius behavior with the same activation energy. Considering the magnetic character of the polarons and the presence of ferromagnetic clusters in the paramagnetic state, we developed a model to determine $\rho_{ab,c}(H, T)$. The excellent agreement between calculated and measured $\rho_{ab,c}(H, T)$ indicates that small polarons play an essential role in the electrical transport of the paramagnetic phase of bilayer manganites.

EPR and magnetization study of the $\text{Ni}_2\text{FeV}_3\text{O}_{11}$ vanadate

23CP62

Nikolaos Guskos^a, V. Likodimos^b, M. Wabia^c, S. Glenis^a, J. Typek^c, S. K. Patapis^a, A. Blonska-Tabero^d, I. Rychlowska-Himmel^d, M. Kurzawa^d, C.L. Lin^e

^a*Solid State Section, Department of Physics, University of Athens, Panepistimiopolis, 15784 Zografos, Athens, Greece*

^b*Department of Physics, National Technical University, 15780 Athens, Greece*

^c*Institute of Physics, Technical University of Szczecin, Al.Piastow 17, 70310 Szczecin, Poland*

^d*Institute of Chemistry and Environmental Protection, Technical University of Szczecin, Al.Piastow 42, 71065 Szczecin, Poland*

^e*Department of Physics, Temple University, Philadelphia, PA 19122 USA*

The novel nickel-iron vanadium oxide $\text{Ni}_2\text{FeV}_3\text{O}_{11}$ is investigated by EPR and dc magnetization measurements. Both measurements exhibit several singularities, indicative of diverse magnetic interactions.

Charge Disproportionation of A site in New Ni(II) Perovskite BiNiO_3

23CP63

Shintaro Ishiwata^a, Masaki Azuma^b, Mikio Takano^a, Eiji Nishibori^c, Masaki Takata^c, Makoto Sakata^c

^a*Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan*

^b*ICR, Kyoto Univ. and PRESTO-JST, Kawaguchi, Saitama, Japan*

^c*School of Engeneering, Nagoya University, Furo-cho, Chigusa-ku, Nagoya, Aichi, Japan*

A new triclinic perovskite BiNiO_3 was synthesized at a high pressure of 6.5 GPa in an oxidizing atmosphere. Structure refinements based on synchrotron X-ray powder diffraction and bond valence calculation revealed a disproportionation of the Bi ions into Bi^{3+} and Bi^{5+} , both being located in distorted oxygen octahedra. Because of the presence of Bi^{5+} , the oxidation state of Ni was 2+, rather than 3+ as had been expected, and BiNiO_3 thus showed insulating behavior with localized spins of S=1. An antiferromagnetic ordering with spin canting took place at 300K.

MAGIC HOLE DOPED COMPOSITION OF $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$ MANGANITE: CRYSTAL STRUCTURE, AND UNUSUAL MAGNETIC AND TRANSPORT PROPERTIES AT $x=0.45$

23CP64

A. V. Lazuta^a, V. A. Ryzhov^a, A. I. Kurbakov^a, V. A. Trounov^a, I. I. Larionov^a, C. Martin^b, B. Raveau^b

^a*Petersburg Nuclear Physics Institute, Gatchina 188350 St.Petersburg, Russia*

^b*Laboratoire Crismat, Ismra, Boulevard du Mal Juin, 140050 Caen Cedex, France*

The manganite is established to exhibit a Pbnm space group and the net ferromagnetic (F) ground state, with Jahn-Teller distortions remaining in metallic F phase below T_c . A field hysteresis of the second harmonic of magnetization is observed above T_c . This behavior is explained by assuming a spontaneous magnetization to be associated with the AF domains possessing a weak F. The ordered regions destroy at T_c that indicates unusual character of the transition whose possible scenarios are discussed.

23CP65 NONLINEAR MAGNETIC PROPERTIES OF $\text{Nd}_{0.77}\text{Ba}_{0.23}\text{MnO}_3$ PSEUDOCUBIC SINGLE CRYSTAL IN CRITICAL PARAMAGNETIC REGION AND PHASE SEPARATION

A. V. Lazuta^a, V. A. Ryzhov^a, I. D. Luzyanin^a, V. P. Khavronin^a, I. I. Larionov^a, I. O. Troyanchuk^b, D. D. Khalyavin^b

^a*Petersburg Nuclear Physics Institute, Gatchina 188350 St.Petersburg, Russia*

^b*Institute of Physics of Solids and Semiconductors, N.A.S., P.Brovki 17, 220072, Minsk, Belarus*

The second harmonic of magnetization is studied for $\text{Nd}_{0.77}\text{Ba}_{0.23}\text{MnO}_3$ that exhibits the insulating ferromagnetic ground state. The nonlinear response reveals the coexistence of the two magnetic phases in the paramagnetic region below $T_p = 147\text{K}$. Above T_p , critical behavior is described by dynamic scaling for the 3-D isotropic ferromagnets. The appearance a new magnetic phase is attributed to phase separation which can occur at orbital ordering in the cubic manganites.

23CP66 Elastic and structural properties of single crystalline $\text{La}_{0.95}\text{Sr}_{2.05}\text{Mn}_2\text{O}_7$

Yuji Kodama, Yoshiaki Nakanishi, Noriyuki Yoshimoto, Masahito Yoshizawa

Department of Materials Science and Engineering, Iwate University, Morioka 020-8551, Japan

It has been reported that CE-type Charge-ordered (CO) phase is observed at $T_{CO} = 210\text{ K}$ ¹ and the phase competition between this phase and A-type antiferromagnetic phase below T_{CO} in $\text{LaSr}_2\text{Mn}_2\text{O}_7$ ², which is a half-doped bilayered manganite $\text{La}_{2-2x}\text{Sr}_{1+2x}\text{Mn}_2\text{O}_7$ with $x = 0.5$. The competition becomes stronger in $x = 0.525$ sample. We have grown single crystals of $x = 0.525$ by an optical floating-zone furnace to measure some physical and structural properties. We will discuss the results of ultrasonic measurement and the origin of the phase competition by comparing to the results for $\text{LaSr}_2\text{Mn}_2\text{O}_7$ ³.

¹T. Kimura et al., PRB 58, 11081 (1998).

²D. N. Argyriou et al., PRB 61, 15269 (2000).

³A. Imaduddin et al., Physica B, in press.

23CP67 Magnetic phase diagram of $(\text{La}_{1-z}\text{Pr}_z)_{1.2}\text{Sr}_{1.8}\text{Mn}_2\text{O}_7$ for $z = 0.6$

Y. Nakanishi^a, K. Shimomura^a, M. Matsukawa^a, S. Nakamura^b, R. Suryanarayanan^c, A. Revcolevschi^c, M. Yoshizawa^a

Department of Materials Science and Engineering, Iwate University, Morioka 020-8551, Japan

Center for Low Temperature Science, Tohoku University, Sendai 980-8577 Japan.

Laboratoire de Chimie des Solides, CNRS, Université Paris-Sud, 91405 Orsay, France.

We have established a magnetic phase diagram of $(\text{La}_{1-z}\text{Pr}_z)_{1.2}\text{Sr}_{1.8}\text{Mn}_2\text{O}_7$ for $z = 0.6$ by means of elastic constants and magnetization measurements. A metamagnetic transition at H_m was observed both with a large hysteresis below the temperature of $T^* \sim 40\text{ K}$, and without a hysteresis above T^* . Two distinct elastic anomalies were observed in the field-dependence of elastic constants at the corresponding field H_m and another one below T^* . It was found that there were mainly three magnetic phases in the Field-Temperature ($H - T$) phase diagram. We will discuss the magnetic properties at low temperatures.

Electronic Properties of the Novel 4d Metallic Oxides SrRhO_3 and $\text{Sr}_3\text{Rh}_2\text{O}_7$ **23CP68**

Kazunari Yamaura^a, Qingzhen Huang^b, Masao Arai^a, David P. Young^c,
Eiji Takayama-Muromachi^a

^a*National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan*

^b*NIST Center for Neutron Research, 100 Bureau Dr., Gaithersburg, MD 20899, USA*

^c*Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA*

The title metallic compounds (both have five 4d electrons per Rh) with perovskite- and Ruddlesden-Popper-type structures have been synthesized recently in our group by applying high-pressure and high-temperature techniques (6 GPa and 1500 °C), followed by measurements of the magnetic susceptibility, electrical resistivity, thermopower, and specific heat. Neutron and x-ray diffraction studies at room temperature revealed those structures. The DOS of SrRhO_3 was computed by LDA method with and without consideration of spin polarization. The electronic properties of these compounds will be reviewed, and compared with those of the analogous ruthenates, which have received the most attention.

The comparison of structure and magnetic properties between $\text{La}_{1-x}\text{Pb}_x\text{MnO}_3$ and $\text{La}_{1-x}\text{Pb}_x\text{CoO}_3$ system**23CP69**

Y. L. Hsieh, M. F. Tai

Dep. of Physics, National Chung Cheng University, Ming-Siung, Chia-Yi 621, Taiwan

The perovskite-like hole-doped $\text{La}_{1-x}\text{Pb}_x\text{TO}_3$ (x=0-0.5) oxides with T = Mn and Co are in the rhombhedral $\bar{R}\bar{3}c$ structure. The similar physical phenomena, including the M-I transition, CMR, and related striking magnetostructural properties etc., have been observed in both the strongly correlation electron systems, however, the fundamental mechanisms actually are different. All our maganese samples exhibit long-range order ferromagnetism , and the cobalt compounds present spin-glass behavior, or even paramagnetism above 2 K.

Optical Study in the Charge-Ordered Phase of $(\text{Nd}_{1-x}\text{Sr}_x)\text{MnO}_3$ **23CP70**

Haruhiko Kuroe, Ikue Habu, Akihiko Sakuta, Hideki Kuwahara, Tomoyuki Sekine

Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

We report the temperature and Sr concentration dependences of Raman and infrared reflection spectra in $(\text{Nd}_{1-x}\text{Sr}_x)\text{MnO}_3$. When $x = 0.5$, a phase transition from the paramagnetic insulator phase to the ferromagnetic metal one occurs at 250 K and a successive phase transition to the antiferromagnetic charge-ordered one at $T_{\text{CO}} = 158$ K. Above T_{CO} , we observe a broad Raman peak around 200 cm^{-1} , consistent with the $Ibmm$ symmetry with a small lattice distortion from the ideal perovskite structure. Below T_{CO} , we observe several new Raman peaks, coming from the folded phonons due to the formation of the superlattice. The infrared reflection spectra support the existence of the folded phonons below T_{CO} . A magnetic Raman peak from the single-ion-anisotropy gap is also observed below T_{CO} . These new peaks are not observed in the $x = 0.48$ sample which does not have the charge-ordered phase.

23CP71 High Field and Low Temperature X-ray Study on Phase Segregation for $\text{Nd}_{0.5}\text{Sr}_{0.5}\text{MnO}_3$ Powder and Single Crystal

Satoshi Awaji^a, Yosuke Watanabe^b, Tetsutaro Masaki^b, Manabu Fujiwara^b, Tetsuo Fukase^b, Norio Kobayashi^b, Kazuo Watanabe^a

^a*HFLSM, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan*

^b*Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan*

It has been found that the coexistence of the high temperature ferromagnetic (FM) and the low temperature antiferromagnetic (AF) phases was observed below the charge order transition temperature T_{co} for the $\text{Nd}_{0.5}\text{Sr}_{0.5}\text{MnO}_3$ powder sample. In order to investigate details of the phase segregation, the X-ray diffraction was carried out for the $\text{Nd}_{0.5}\text{Sr}_{0.5}\text{MnO}_3$ single crystal in magnetic fields up to 5 T. It was found that the phase segregation is strongly depends on the wave length of X-ray. These results suggest that the phase segregation of FM and AF mainly occurs near the surface within a few μm in depth.

23CP72 On the ferromagnetism of high-spin states

Nadejda V. Terekhina^a, Julia Mikhailova^a, Rogdai Zaitsev^b

^a*NII Teploprapor, Prospect Mira 95, Moskow 129 085, Russia*

^b*Russian Research Center, Kurchatov Institute, Kurchatov Sq1, 123 182 Moscow, Russia*

The possibility of ferromagnetic ordering in a generalized Hubbard model and for infinite Hubbard energy is studied. The phase diagram of the ferromagnetism existence as a function of the degree of filling of d-shall is constructed. The calculation of the points of critical densities, between which ferromagnetic instability arises, was performed in a model of semielliptic primer density of state. On the bases of the deduced criterion, ferromagnetic instability was observed inside each integer interval of variation of the d-electron density. The appearance of separate regions of ferromagnetic instability is due to the possibility of change of sign of the scattering amplitude for Fermi excitations with opposite spin projections.

23CP73 Co K-edge Pre-edge XANES Studies on Intermediate Spin State of RCoO_3 ($\text{R} = \text{La, Eu}$)

J. Y. Chang, B. N. Lin, Y. Y. Hsu, H. C. Ku

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.

Room temperature Co K-edge x-ray absorption near-edge spectra (XANES) for the rhombohedral RCoO_3 ($\text{R} = \text{La, Eu}$) are reported. The small pre-edge peaks (P) observed near 7707-7715 eV are from the 1s-3d dipole transition, which is weakly allowed through the hybridization of Co 4p states with Co 3d states of neighboring atoms. The appearance of more than one pre-edge peak indicates an absorption transition to the majority e_g states as well as to minority e_g and t_{2g} state, which support a spin state transition from low spin state (LS: t_{2g}^6) to intermediate spin state (IS: $t_{2g}^5 e_g^1$) around 90 K for LaCoO_3 . Similar pre-edge features are observed for EuCoO_3 indicates that Eu compound is also in the IS state with higher spin state transition temperature close to room temperature.

2D Ferromagnetic Fluctuation above T_N in Orbital-ordered LaMnO_3 A-type Antiferromagnet

23CP74

C. T. Chen, S. H. Wu, Y. Y. Hsu, B. N. Lin, H. C. Ku*Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.*

Onset of two-dimensional (2D) ferromagnetic short range order with $T_{2D} = 152$ K was observed above A-type antiferromagnetic (AF) Néel temperature $T_N = 139$ K in orbital-ordered LaMnO_3 Mott insulator, using low field (≤ 10 mT) field-cooled (FC) and zero-field-cooled (ZFC) magnetic susceptibility measurements. The A-type AF order with strong basal plane ferromagnetic coupling is due to orbital-ordered $\text{Mn}^{3+} e_g$ electrons at $T_{oo} \simeq 780$ K, and AF structure is stabilized through weak c-axis t_{2g} antiferromagnetic coupling. For applied field of 0.1 T, $T_{2D} = 147$ K and $T_N = 137$ K. Low temperature magnetization and Mn K-edge x-ray absorption near-edge spectrum (XANES) data on orthorhombic LaMnO_3 and rhombohedral $\text{LaMnO}_{3+\delta}$ ($\delta > 0$) will be discussed.

Transport Properties and Magnetic Phase Diagram in a Strongly Correlated $\text{La}_{0.7}(\text{Ba}_{1-x}\text{Pb}_x)_{0.3}\text{MnO}_{3+\delta}$ perovskites

23CP76

M. F. Tai, S. Z. Gong, Y. S. Wang*Department of Physics, Chung Cheng University, Chia-Yi, Taiwan 621, R.O.C.*

The crystallographic data, transport properties and magnetic phase diagrams have been investigated for strongly electron correlated $\text{La}_{0.7}(\text{Ba}_{1-x}\text{Pb}_x)_{0.3}\text{MnO}_{3+\delta}$ ($0.0 \leq x \leq 1.0$) series. All our samples are in a rhombohedral structure of lattice parameters $a \simeq 5.50$ Å and $c \simeq 13.38$ Å. The enhanced disorder effect of addition of the Pb^{2+} ions doesn't apparently affect on both the metal-insulating and magnetic ordering temperatures as well as the magnetoresistance (MR) ratio. For the MR ratios of all samples linearly decrease with temperature from $\simeq 25\%$ at 5 K down to $\simeq 6\%$ at 300 K. The chemical disorder effect of the Pb substitution doesn't change the magnetic properties at low temperatures. It can be contributed to exhibit the same ratios of $[\text{Ba}^{2+}] + [\text{Pb}^{2+}] / [\text{La}^{3+}]$ and $[\text{Mn}^{4+}] / [\text{Mn}^{3+}]$ in the Pb doping manganese oxides.

Raman Scattering Study of $\text{Y}_{1-x}\text{Ca}_x\text{TiO}_3$ Single Crystals

23CP77

Takao Tsurui^a, Norio Ogita^b, Masayuki Udagawa^b, Masami Tsubota^c, Kazuyuki Uchihira^c, Fumitoshi Iga^c^a*Venture Business Laboratory, Hiroshima University, Higashi-Hiroshima, 739-8527 Japan*^b*Faculty of Integrated Arts & Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 Japan*^c*ADSM, Hiroshima University, Higashi-Hiroshima, 739-8530 Japan*

We have systematically studied the Raman scattering spectra of single crystal $\text{Y}_{1-x}\text{Ca}_x\text{TiO}_3$ in the temperature region from 298K to 8K. The observed peaks below 600cm^{-1} have been assigned as phonons, and their observed number satisfies the symmetry of $Pbnm$ at room temperature. However, new additional peaks appear below 200K. This result shows that the crystal structure becomes monoclinic of $P2_1/n$. This structural phase transition from orthorhombic to monoclinic ones universally occurs for $x \leq 0.39$ at around 200K.

23CP79 Dynamics of Phase Transitions in Cobalt PerovskitesDespina Louca*University of Virginia, Department of Physics, Charlottesville, VA 22903*

$\text{La}_{1-x}\text{Sr}_x\text{CoO}_3$ is distinct because of its unique spin transitions, subjecting the system to variable spin-lattice coupling. These occur with increasing temperature and doping from the low spin, to either a high-spin or an intermediate-spin (IS) configuration. The IS state is distinct because it is Jahn-Teller (JT) active. Such spin fluctuations would be accompanied by distortions in the local atomic structure corresponding to the type of transition. Pair density function analysis provided strong evidence for local lattice distortions associated with a Jahn-Teller active mode directly correlated to the change in the magnetic/conductive states of this system. Measurements of $S(Q, \omega)$ provided additional evidence that lattice modes indeed change with temperature and composition. The magnitude of their intensity is indicative of a collective excitation consistent with a phase transition not otherwise observed macroscopically.

23CP80 Pressure Effect on Transport and Magnetic Properties of $A_2\text{FeMoO}_6$ ($A = \text{Ba, Sr}$)Tatsuo Goko^a, Eiji Morimoto^a, Yoshiyuki Endo^a, Juichiro Arai^a, Takehiko Matsumoto^b^a*Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan*^b*National Institute for Material Science, Tsukuba, Ibaraki 305-0047, Japan*

For double perovskite oxides $A_2\text{FeMoO}_6$ ($A = \text{Ba, Sr}$), which show the colossal magnetoresistance up to room temperature, the resistivity and magnetization have been measured under pressure and magnetic fields. As pressure is applied to $\text{Ba}_2\text{FeMoO}_6$ (BFMO), the magnetic transition temperature T_C increases linearly, suggesting the enhancement of magnetic interactions between cations. The normalized resistivity $\rho(P)/\rho(P = 0)$ at 5 K exhibits quite same pressure dependence in all magnetic fields up to 7 T, though the field dependence of magnetoresistance is extremely different in each magnetic field. This result indicates that the components contributing to the large field-dependence of ρ hardly depends on pressure.

23CP81 Pressure-enhanced antiferromagnetism in $\text{Sr}_3\text{Ru}_2\text{O}_7$ Yuri Sushko, Bruno deHarak, Gang Cao, Oleg Naumenko*Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506*

The experimental picture of magnetism in a double-layered ruthenate $\text{Sr}_3\text{Ru}_2\text{O}_7$ (with both the ferromagnetic and antiferromagnetic correlations present) could be consistent with a FM (itinerant) ordering of spins within bilayers, and AF (superexchange) coupling between bilayers. Since the effects of reduced dimensionality can be suppressed by pressure, we have conducted the systematic study of the effects of hydrostatic (helium-gas) pressure on magnetic susceptibility of single crystals of $\text{Sr}_3\text{Ru}_2\text{O}_7$. Here we report that indeed the tendency to antiferromagnetism (and not ferromagnetism) is enhanced under hydrostatic pressure, as evidenced by an observed increase with pressure of a Neel-like transition temperature T_{max} . We also report a pressure-induced first-order transition, presumably a structural one, which occurs at around 80K in response to the change of pressure at low temperature.

Study of low band width manganites with equal average ionic radii and manganese valence ratio
23CP82
Subhayan Biswas^a, Sandip Chatterjee^b, A. K Nigam^b, S. K De^a
^a*Dept. of Materials Science, Indian Association for the Cultivation of Science, Kolkata, India, 700032*
^b*Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India, 400005*

The reason for the interesting properties observed in CMR materials, other than average ionic radii ($< r_A >$) and Mn valence ratio (Mn^{3+}/Mn^{4+}), has been tried to find out by investigating the transport and magnetic properties of $Pr_{0.65}(Ca_{0.7}Sr_{0.3})_{0.35}MnO_3$, $Pr_{0.527}La_{0.123}(Ca_{0.8}Sr_{0.2})_{0.35}MnO_3$ and $Pr_{0.65}(Ca_{0.866}Ba_{0.134})_{0.35}MnO_3$. The $< r_A >$ and valence ratio of all three samples have been kept equal. The outcome of the investigation indicates more intense role of the nature of individual A-site cation and the lattice mismatch.

ESR INVESTIGATION OF $Nd_{0.77}Ba_{0.23}MnO_3$ SINGLE CRYSTAL IN PARAMAGNETIC REGION: EVIDENCE FOR PHASE SEPARATION
23CP84
A. V. Lazuta, V. A. Ryzhov, I. A. Kiselev
Petersburg Nuclear Physics Institute, Gatchina 188350 St.Petersburg, Russia

We present an electron-spin-resonance (ESR) study in single crystal of $Nd_{0.77}Ba_{0.23}MnO_3$ above the Curie point $T_c = 124$ K. The temperature dependence of the ESR linewidth is established to agree well with critical behavior of that for a 3-D isotropic ferromagnet in paramagnetic region above $T_p = 147$ K, when relaxation of an uniform magnetization is caused by the dipolar interactions and spin-phonon coupling. Below T_p a new regime is observed, the signal depending on a temperature treatment. The compound reveals the two signals at a slow cooling from the room temperature. This effect is assumed to be related to phase separation that can occur in the cubic manganites at orbital ordering.

Spectroscopic Evidence for Charge-Density-Wave Formation in Manganite
23CP85
Noriaki Kida, Masayoshi Tonouchi
Research Center for Superconductor Photonics, Osaka University, Suita, Osaka 565-0871, Japan.

The typical charge ordered manganite, $Pr_{0.7}Ca_{0.3}MnO_3$ investigated here, shows the charge ordering (CO), which is characterized both by a single-particle excitation across the charge-gap 2Δ and by a collective excitation well below 2Δ . The former spectrum has been extensively investigated in recent years. However, a clear evidence for the presence of the collective excitation has not been reported so far. Here we used THz time-domain spectroscopy to directly probe the low-energy (0.5–5 meV) electrodynamics of $Pr_{0.7}Ca_{0.3}MnO_3$ and revealed the existence of a finite peak structure around 2–3 meV well below $2\Delta \sim 300$ meV. As compared to the optical properties of low-dimensional materials, we attributed this observed structure to the collective excitation mode arising from the charge-density-wave condensate.

23CP86 Successive Transitions of the Ordered $REBaMn_2O_6$ $RE=Tb, Dy, Ho$ and Y

T. Nakajima^a, H. Kageyama^a, H. Yoshizawa^b, M. Ichihara^a, K. Ohoyama^c, Y. Ueda^a

^a*Materials Design and Characterization Laboratory, ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan*

^b*Neutron Scattering Laboratory, ISSP, University of Tokyo, Tokai, Ibaraki 319-1106, Japan*

^c*Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan*

The ordered perovskites $REBaMn_2O_6$ ($RE=Tb, Dy, Ho$ and Y) consist of alternate stack of the RE^{3+} and Ba^{2+} ions along the c -axis. The $YBaMn_2O_6$ shows three successive transitions, a structural transition ($T_{c1}=520$ K), a M-I transition ($T_{c2}=480$ K) and an antiferromagnetic transition ($T_{c3}=195$ K). The $TbBaMn_2O_6$, the $DyBaMn_2O_6$ and the $HoBaMn_2O_6$ show the similar transitions as the $YBaMn_2O_6$. It should be noticed that the charge/orbital order in these compounds occurs at much higher temperature compared with the other disordered manganite perovskites. We will discuss these phase transitions from the crystal structure.

23CP87 Optical Reflectivity Study on Magnetoresistive Manganese Perovskites: Impurity Effect on the Ferromagnetic-Metallic and Charge-Ordered States

Shunsuke Okuyama, Koshi Takenaka, Ryozo Shiozaki, Yuko Sawaki, Shunji Sugai

Department of Physics, Nagoya University, 464-8602 Nagoya, Japan

Impurity effect on manganese perovskites are investigated by the optical reflectivity measured on cleaved surfaces of the single crystals. The Al impurity affects optical conductivity $\sigma(\omega)$ of ferromagnetic-metallic $La_{1-x}Sr_xMnO_3$ over a wide energy range up to 1 eV or higher, contrary to the simple-Drude picture. In particular, the Al impurity induces the unconventional localization state, which is characterized by the additional absorption at ~ 3 eV in $\sigma(\omega)$ in addition to the infrared peak. The present study shows that the energy gap of the charge-ordered (CO) state in $Nd_{0.5}Sr_{0.5}MnO_3$ is about 0.5 eV, much larger than that suggested by the previous studies using polished surfaces. The CO state can be easily damaged by external disorder. We also discuss the different effect on the CO state between Cr and Al doping.

23CP88 Spin modulation of ^{57}Fe NMR frequency and relaxation in $BiFeO_3$

D.F. Khozeev^a, A.V. Zalessky^b, A.A. Gippius^a, E.N. Morozova^a, A.A. Bush^c, V.S. Pokatilov^c

^a*Moscow State University, 119899, Moscow, Russia*

^b*Institute of Crystallography, RAS, Leninskii pr. 59, 117333, Moscow, Russia*

^c*Moscow State Technical University of Radioengineering, Vernadskogo pr.78, 117454, Moscow, Russia*

NMR spectra were measured in ^{57}Fe enriched ferroelectric-antiferromagnet $BiFeO_3$ with space modulated magnetic structure of cycloidal type. This structure leads to space modulation of local field on ^{57}Fe nuclei as well as space periodic spin-spin relaxation and specific NMR line shape with frequency variable local width. Line shape temperature behavior is described using the model of nuclei in Bloch walls. This effect is based on indirect Sule-Nakamura spin-spin interaction which becomes effective at high concentration of magneto-active nuclei as a consequence of excitement of spin waves.

Phase Diagram and Magneto-Transport Properties in $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$ Crystals

23CP89

H. Kuwahara^{a,b}, R. Kawasaki^a, Y. Hirobe^a, S. Kodama^a, A. Kakishima^a^aDept. of Phys., Sophia Univ., Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan^bPRESTO, JST, Tokyo 102-0074, Japan

We have investigated electronic transport and magnetic properties of $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$ crystals with controlled band filling ($0 \leq x \leq 0.8$) grown by the floating zone method. The phase diagram of $\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3$ was obtained through magnetization, resistivity, and crystal structure measurements. We have found the phase separation near the phase boundary ($x=0.62$) between the *A*-type-antiferromagnetic (AF) metal with monoclinic symmetry and the *C*-type-AF insulator with tetragonal one. We have also studied magnetoresistance (MR), Hall resistivity, and Seebeck coefficient in the samples showing various electronic and magnetic structures. We have observed a large *positive* MR just below T_N in the *A*-type-AF sample ($x=0.60$), which is not the conventional negative CMR near T_C in manganites.

Studies of $\text{La}_{0.7-x}\text{Pr}_x\text{Ca}_{0.3}\text{MnO}_3$ ($x=0.4$ and 0.5) under pressure and magnetic field

23CP90

Seongsu LEE^a, J.-G. Park^a, H.C. Kim^b^aDepartment of Physics, Sung Kyun Kwan University, Suwon 440-746, Korea^bMaterial Science Laboratory, Korea Basic Science Institute, Taejeon 305-333, Korea

We investigated resistivity of $\text{La}_{0.7-x}\text{Pr}_x\text{Ca}_{0.3}\text{MnO}_3$ ($x=0.4$ and 0.5) polycrystals under hydrostatic pressures and magnetic fields. With increasing pressures and fields, overall resistivity values drop sharply and at the same time MI transition increases monotonically. With increasing pressures and fields, however, our resistivity data show another anomaly developing at lower temperature than the MI transition. But, our susceptibility data do not show any anomalous behavior at the temperature of the resistivity anomaly, suggesting that this new feature seen in the resistivity data is unlikely to be connected to a change in the thermodynamic properties.

Inhomogeneous States and Isotope Substitution in Magnetic Oxides

23CP91

N.A. Babushkina

Institute of Molecular Physics, RRC "Kurchatov Institute", 123182 Moscow, Russia

Inhomogeneous states and the phase separation originating from the competition between various types of charge, spin, and orbital ordering in complex magnetic oxides were experimentally studied. The oxygen isotope substitution was used both as the unique tool for investigating inhomogeneous state and as the method for modification of the ground state. At first, we demonstrate that the magnetic and transport measurements revealed a phase separation in $(\text{La}_{0.25}\text{Pr}_{0.75})_{0.7}\text{Ca}_{0.3}\text{MnO}_3$ compound with various concentrations of ^{18}O . Then we studied the isotope effect on transport and magnetic properties of $\text{Sm}_{0.55}\text{Sr}_{0.45}\text{MnO}_3$ manganite and showed that the $^{16}\text{O} \rightarrow ^{18}\text{O}$ isotope substitution induces the phase separation in $\text{Sm}_{0.55}\text{Sr}_{0.45}\text{MnO}_3$ system causes the formation of antiferromagnetic clusters in the ferromagnetic matrix.

23CP92 Anomalies of magnetic and magnetoelastic properties in $\text{Nd}_{1-x}\text{Ca}_x\text{MnO}_3$

Kamil I. Kamilov^a, Antonina M. Kadomtseva^a, Yurii F. Popov^a, Gennadiy P. Vorob'ev^a, Jaroslav S. Shtofich^a, Alexandr A. Mukhin^b, Vsevolod Yu. Ivanov^b, A. M. Balbashov^c

^a*Moscow State University, Leninskie Gori, 119899 Moscow, Russia*

^b*General Physics Institute of the Russian Acad. Sci., 38 Vavilov St., 119991 Moscow, Russia*

^c*Moscow Power Engineering Institute, 14 Krasnokazarmennaya St., 105835 Moscow, Russia*

Magnetic, anisotropic, and magnetoelastic properties have been investigated for $\text{Nd}_{1-x}\text{Ca}_x\text{MnO}_3$ monocrystals ($x=0; 0.25; 0.05; 0.3$) in pulsed magnetic fields up to 250 kOe in temperature range 10-100 K. Jumps of magnetization and magnetostriction induced by the strong magnetic field H along b have been observed at $H \approx 100$ kOe in the $x=0, 0.25, 0.05$ compounds. We attribute this phenomena to a reorientation of the weak ferromagnetic moment from c to b -axis. Corresponding H-T phase diagrams were obtained. This work supported by RFBR (00-02-16500 and 00-15-96695).

23CP93 Induced by magnetic field spin reorientation in YMn_2O_5

Kamil I. Kamilov^a, Antonina M. Kadomtseva^a, Yurii F. Popov^a, Gennadiy P. Vorob'ev^a, Pavel N. Makhov^a, Mohammad M. Tehranchi^b

^a*Moscow State University, Leninskie Gori, 119899 Moscow, Russia*

^b*Department of Physics, Shahid Beheshti University, Evin, 19834 Teheran, Iran*

In ferroelectric YMn_2O_5 weak ferromagnetism was found along a -axis of rhombic crystal. It was shown that the nature of ferromagnetic sublattices cant is determined by magnetoelectric ordering. Reorientation of magnetic moment was observed under strong magnetic field applied along b -axis of crystal, that was accompanied by sharp increase of magnetostriction and jumps of electric polarization. In EuMn_2O_5 , as in YMn_2O_5 , spontaneous and magnetic field induced phase transitions from incommensurate to commensurate phase were observed, accompanied by cardinal changing of magnetoelectrical properties.

This work supported by RFBR (01-02-16468 and 00-15-96695)

23CP94 Orbital Order in $\text{La}_{0.95}\text{Sr}_{0.05}\text{MnO}_3$ and $\text{LaMn}_{1-x}\text{Cr}_x\text{MnO}_3$ probed by ESR

J. Deisenhofer^a, H.-A. Krug von Nidda^a, M.V. Eremin^b, B.I. Kochelaev^b, A. Loidl^a

^a*Experimentalphysik V, EKM, Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany*

^b*Kazan State University, 420008 Kazan, Russia*

We present an analysis of Dzyaloshinsky-Moriya interaction and crystal-field parameters using the angular and T -dependence of the paramagnetic resonance shift and linewidth in single crystals of $\text{La}_{0.95}\text{Sr}_{0.05}\text{MnO}_3$ within the Jahn-Teller distorted phase. The DM interaction (~ 1 K) results from the tilting of the MnO_6 octahedra. The CF parameters D and E are found to be of comparable magnitude (~ 1 K) with $D \approx -E$. This indicates a mixing of the $|3z^2 - r^2\rangle$ and $|x^2 - y^2\rangle$ states for the real orbital order with an orbital parameter $\theta \approx -60^\circ$. Thus, the discrepancy between anisotropic optical spectra and the value $\theta \approx 108^\circ$ obtained from neutron scattering in LaMnO_3 can be explained. By substituting Mn with Cr, the JT-driven OO persists up to $x = 0.3$. The Cr^{3+} ions do not contribute to the ESR signal.

GW Study of Half-Metallic Electronic Structure of $\text{La}_{0.7}\text{Ba}_{0.3}\text{MnO}_3$ **23CP95**

Hiori Kino^a, Ferdi Aryasetiawan^b, Takashi Miyake^c, Kiyoyuki Terakura^b, Takahisa Ohno^a

^a*National Institute for Materials Science, Sengen, Tsukuba, Ibaraki, 305-0047, Japan.*

^b*Research Institute for Computational Sciences, AIST, Central 2, Tsukuba, Ibaraki 305-8568, Japan.*

^c*Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan.*

The half-metallic systems will be quite useful in future spin electronics. The LDA in the density functional theory has been widely used first-principles method, but it is also known that the LDA underestimates band gaps in semiconductors and insulators. The *GW* approximation is employed to study $\text{La}_{0.7}\text{Ba}_{0.3}\text{MnO}_3$, which is one of candidates for the half-metallic ferromagnets, to show that the lowest energy of the unoccupied states for the minority spin is far above the Fermi energy compared to that in the LDA. As a bulk, this system is predicted to be a fully-polarized half-metallic ferromagnet.

Orbital Ordering in UGa_3 : Direct Detection by ^{69}Ga NMR**23CP96**

Shinsaku KAMBE^a, Harukazu KATO^a, Hironori SAKAI^a, Russell E. WALSTEDT^a,
Dai AOKI^b, Yoshinori HAGA^a, Yoshichika Ônuki^b

^a*ASRC, Japan Atomic Energy Research Institute Tokai, Ibaraki 319-1195, JAPAN*

^b*Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, JAPAN*

^{69}Ga NMR spectra are reported and analyzed for the paramagnetic and antiferromagnetically (AFM) ordered states of UGa_3 ($T_N = 67\text{K}$). Ordered-state splitting of the NMR lines indicates that the fourfold symmetry of the Ga-site hyperfine (HF) coupling is broken in the AFM state. A striking change in the Ga HF coupling constant also occurs at T_N . These effects are attributed to uranium (5f) orbital ordering, which appears to set in just below T_N . Orientation of the U moments has been determined as $[11\delta]$ ($0 < \delta < 1$) for $40\text{K} < T < T_N$ and $[\alpha, \beta, \gamma]$ ($\alpha, \beta, \gamma \neq$) for $T < 40\text{K}$. Electric field gradients and field-dependent HF effects are also discussed.

Specific Heat in Normal Conducting UPt_3 Revisited**23CP97**

Stephan Schöttl^a, Michael Meißner^b, Detlef Günther^b

^a*National Physical Laboratory CBTL, Queens Road, Teddington, Middlesex TW11 0LW, United Kingdom*

^b*Hahn-Meitner-Institut BENSC, Glienicker Str. 100, 14109 Berlin, Germany*

Using a high-quality single crystal with exceptional superconducting transition temperature we have measured specific heat of UPt_3 in the temperature range from 0.3 K to 16 K and in magnetic fields up to 8 T. The focus of this work lies on the normal state properties, where apart from the heavy Fermion behaviour, in neutron scattering experiments magnetic correlations have been found setting in at 6 K. However, this ordering has so far not been confirmed in thermodynamic measurements. For the first time we observe a peak at 6.7 K that shifts to 3.2 K in 3 T, independent of field direction. We discuss its origin and possible explanations either in terms of the magnetic correlations or impurity contributions.

23CP98 New Energy Scale in Low Temperature of YbAl₃

Takao Ebihara^a, Andrew L. Cornelius^b, Jon M. Lawrence^c

^a*Department of Physics, Shizuoka University, 836 Oya Shizuoka, 422-8529, Japan*

^b*Department of Physics, University of Nevada, Las Vegas, Nevada 89154, USA*

^c*Department of Physics and Astronomy, University of California, Irvine, California 92697, USA*

A new anomaly, which is seen in the specific heat and magnetic susceptibility measurements, is observed at lower temperature than Kondo peak temperature at 150 K in YbAl₃. The new peak could associate with a new temperature scale for the development of Fermi liquid coherence in YbAl₃. The susceptibility anomaly was suppressed by application of high magnetic fields above 40T. The magnetization measurement suggests that the low temperature coherent peak disappears when the magnetic field reaches over 40 T. This behavior implies that new character of electronic states in YbAl₃ may appear in high magnetic field.