

Session 22aE

Cooling Superfluid ^3He to the Zero-Temperature Limit

22aE1

S.N. Fisher, G.R. Pickett

Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom

The behaviour of superfluid ^3He in the near-zero temperature regime of negligible normal fluid density is very interesting and very simple. With the normal fluid reduced to a tenuous gas of quasiparticles, the behaviour is dominated by the properties of the condensate, and several properties, otherwise masked by the normal fluid, become observable. For example, we can track coherent spin precession of the condensate as it persists for thousands of seconds after the initial excitation. The rapid thermal response of the dilute quasiparticles gas also allows us to probe many fundamental aspects of the various condensate phases and phase boundaries. Here we discuss the special Lancaster multiple-cell techniques which can cool the superfluid to $T < 0.1 T_c$. We also present some of our experiments to measure fundamental properties of the superfluid which actually rely on the low temperature behaviour for their accomplishment.

Operation of a Dilution Refrigerator in a Micromode

22aE2

V.S. Edelman

P.L. Kapitza Institute for Physical Problems RAS, ul. Kosyginaya 2, Moscow 117334, Russia

Two types of a ^3He - ^4He dilution refrigerator with the ^3He pumping out due to its condensation on a cold wall are described: a classical refrigerator with a heat exchanger and a refrigerator with a collector that allows the operation in a quasi-single cycle refrigeration. The refrigerator operated stably in both cases, when a power of $30 \mu\text{W}$ was fed to the still, i.e., at a circulation rate of ^3He of a few micromoles per second. In this case, the mixing chamber was cooled down to a temperature below 0.05 K.

22aE3 Superfluidity and Quantized Vortex Studies under Rotation up to 3 (1) revolution(s) per second at down to milli (sub-milli) Kelvin Temperatures

Minoru KUBOTA

Institute for Solid State Physics, Univ. Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8581 JAPAN.

Two new high-speed rotating cryostats at the ISSP, University of Tokyo, capable of operating at mK temperatures, are currently employed for studies of superfluidity and quantized vortex states in ^4He and ^3He . A stable high-Q torsional oscillator is used for the study of superfluidity in low-density ^4He films adsorbed on 3-D connected porous substrates. At T_c , the critical phenomena of 3-D Bose superfluids is seen. Under rotation a new type of vortex state is observed. High-resolution NMR studies of superfluid ^3He , contained in capillary arrays of two different diameters, are made as a function of rotational speed. In these experiments, single vortex intrusion events as well as textural modification under rotation are clearly resolved.