The turbulent drag in superfluids

S.L. Ahlstrom^{*a*}, D.I. Bradley^{*a*}, M. Človečko^{*b*}, S.N. Fisher^{*a*}, A.M. Guénault^{*a*}, E. Guise^{*a*}, R.P. Haley^{*a*}, O. Kolosov^{*a*}, P.V.E McClintock^{*a*}, G.R. Pickett^{*a*}, M. Poole^{*a*}, R. Schanen^{*a*}, V. Tsepelin^{*a*}, and A. Woods^{*a*}

^aDepartment of Physics, Lancaster University, UK

^bPresent Address: Slovak Academy of Sciences, Kosice, Slovakia

We present studies of quantum turbulence in superfluid ⁴He and in superfluid ³He-B. Turbulence was produced using a variety of mechanical oscillators; tuning forks, vibrating wires and vibrating grids. The resonant frequencies cover a wide range from tens of hertz to tens of kilohertz. The critical velocity for turbulence nucleation in superfluid ⁴He is consistent with a square root dependence on frequency. At high frequencies, the damping is dominated by sound emission.

At very low temperatures where the normal fluid fraction is negligible, the turbulent drag on a grid in superfluid ³He-B is significantly larger than that in superfluid ⁴He. In superfluid ³He-B we believe that turbulence is generated simultaneously with quasiparticle excitations and this produces extra drag.

Section: VT - Vortices and turbulence

Keywords: superfluid ⁴He, superfluid ³He, quantum turbulence, turbulent drag, tuning forks, vibrating wires