Packed powder as superleak for spin pump experiments in superfluid ³He A_1

 $\underline{\mathrm{N.\ Kamada}^a},$ A. Yamaguchi^a, G. Motoyama^a, A. Sumiyama^a, T. Sakakibara^b, Y. Aoki^c, Y. Okuda^c, and H. Kojima^d

^aGraduate School of Material Science, the University of Hyogo, Japan ^bInstitute for Solid State Physics, the University of Tokyo, Japan ^cTokyo Institute of Tecnology, Japan ^dSerin Physics Laboratory, Rutgers University, USA

Experimental exploration of highly spin-polarized states of liquid ³He by applying external magnetic field is limited by available static magnetic field. In the "ferromagnetic" superfluid A₁ phase of liquid ³He there is an alternate method for boosting spin-polarization by the process of spin pumping¹ without requiring such high magnetic field. The spin pumping in the A₁ phase take advantage of a superleak (SL) acting simultaneously as a filter for both entropy and spin. The spin pump technique that uses the SL-spin filter and a mechanical actuator enables us to directly boost polarization of ³He. The amount of enhancement is spin-polarization has been limited¹ so far. We are now developing a new-type of SL filter made of packed aluminum oxide powder (referred as PAP-SL), in order to achieve greater enhancement of spin polarization. Several kinds of the PAP-SL filter were constructed by pressing aluminum oxide powders into a cylinder holder. The packed powder structures were carefully characterized by a flow-rate-measurement, X-ray tomography, and mercury intrusion porosimetry. The preliminary result shows that the PAP-SL works as SL filter for the superfluid ³He, but the critical current is strongly suppressed compared to a regular cylinder SL filter.

1. A. Yamaguchi, Y. Aoki, S. Murakawa, H. Ishimoto, and H. Kojima, Phys. Rev. B 80, 052507 (2009).

Section: QF - Quantum Fluids

Keywords: Superfluid ³He, The A_1 phase