Anomalous superflow along an interface between aerogel and superfluid ³He

S. Higashitani^a, <u>H. Takeuchi^b</u>, S. Matsuo^a, Y. Nagato^a, and K. Nagai^a

 $^a {\rm Graduate}$ School of Integrated Arts and Sciences, Hiroshima University, Japan $^b {\rm Department}$ of Physics, Osaka City University, Japan

In our previous work¹, we have discussed magnetic response of odd-frequency *s*-wave Cooper pairs induced around the interface between aerogel and superfluid ³He-B. It was shown that, unlike bulk superfluids, Pauli spin susceptibility is enhanced by the formation of the odd-frequency pairs. In this work, we investigate supercurrent along the aerogel-superfluid ³He-B interface. We find that the supercurrent changes in its direction in the aerogel near the interface, in other words, the proximity-induced pairing state has a "negative" superfluid mass density. We discuss the relation between this phenomenon and odd-frequency paring.

1. Higashitani, S., Takeuchi, H., Matsuo, S., Nagato, Y., and Nagai, K. (2013). "Magnetic Response of Odd-Frequency s-Wave Cooper Pairs in a Superfluid Proximity System", Phys. Rev. Lett. **110**, 175301.

Section: QF - Quantum Fluids

Keywords: superfluid ³He, aerogel, odd-frequency pairs