Competition between superfluid overlayer and mobile solid layer of ³He-⁴He mixture films on porous gold

J. Taniguchi^a, T. Mouri^a, M. Suzuki^a, M. Hieda^b, and T. Minoguchi^c

In the previous QCM measurements for 4 He films adsorbed on porous gold, we have observed a competition between superfluidity and slippage: In relative low areal densities, the resonance frequency increases gradually below a certain temperature T_S due to the slippage of solid layer, while the superfluid onset T_C is observed in high areal densities. In the crossover region, the slippage below T_S is suddenly suppressed at a certain temperature T_D , which is just below T_C . As an origin of this sudden suppression, the hardening of a new sound mode has been suggested, where a superfluid component oscillates with a normal component bound to dislocations in solid layer in an out-of-phase way. To change the amount of normal component, we introduced a small amount of 3 He onto 4 He films, and studied the competition as a function of 3 He areal density ρ_3 . As ρ_3 is increased, T_C is monotonically suppressed. On the other hand, T_D increases in the low ρ_3 region, and then turns over to decrease in parallel to T_C . We will discuss the ρ_3 dependence based on the new sound mode.

1. T. Minoguchi, J. Phys.: Conf. Ser. **150** 032060 (2009).

Section: LD - Low dimensional and confined systems

Keywords: superfluidity, slippage, ³He-⁴He mixture film

^aDepartment of Engineering Science, University of Electro-Communications, Japan

^bDepartment of Physics, Nagoya University, Japan

^cInstitute of Physics, Tokyo University, Japan