Detection of Half-Quantum Vortex between Parallel Plates in Superfluid ³He-A

Y. Kimura^a, T. Kunimatsu^{a,b}, K. Obara^a, H. Yano^a, O. Ishikawa^a, and T. Hata^a

 $^a{\rm Graduate}$ School of Science, Osaka City University, Japan

^bThe Institute for Solid State Physics, The University of Tokyo, Japan

In superfluid ³He-A, it was theoretically predicted that the half-quantum vortex (HQV) is stable in the order parameter configuration where the order parameters \hat{d} and $\hat{\ell}$ are perpendicular to each other¹. However, the existence of the HQV has not been reported so far in experiments with a parallel plate sample cell². We are trying to detect the HQV in ³He-A by using a new technique. In ³He-A, $\hat{\ell}$ is parallel to the surface normal of the sample container, $\hat{\nu}$, due to the anisotropy of ³He-A, and in the presence of a magnetic field, H, \hat{d} is perpendicular to H due to the anisotropy of the magnetic energy. If H > 3 mT parallel to $\hat{\nu}$ is applied to ³He confined between parallel plates whose gap is as narrow as the dipole coherence length ~ 10 μ m, we can obtain a $\hat{\ell} \perp \hat{d}$ texture. In the higher magnetic field and under rotation whose axis is parallel to $\hat{\nu}$, the HQV would be generated³. In order to detect the HQV, we will use a rotating cryostat at ISSP² and perform cw-NMR measurement. Moreover, we will use a new technique of cw-NMR measurement in which the static magnetic field can be tilted to $\hat{\nu}$.

- 1. M. M. Salomaa and G. E. Volovik, Phys. Rev. Lett. 55, 1184 (1985).
- M. Yamashita, K. Izumina, A. Matsubara, Y. Sasaki, O. Ishikawa, T. Takagi, M. Kubota, and T. Mizusaki, *Phys. Rev. Lett.* **101**, 025302 (2008).
- K. Kondo, T. Ohmi, M. Nakahara, T. Kawakami, Y. Tsutsumi, and K. Machida, J. Phys. Soc. Jpn. 81, 104603 (2012).

Section: QF - Quantum Fluids

Keywords: superfluidity, helium-3, vortex, NMR