Effect of Odd-Frequency Cooper Pairing on Pauli Spin Susceptibility in a Superfluid Proximity System

S. Higashitani^a, H. Takeuchi^b, S. Matsuo^a, Y. Nagato^a, and K. Nagai^a

 a Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan b Department of Physics, Osaka City University, Osaka, Japan

We report a theoretical study of magnetic response of odd-frequency s-wave Cooper pairs induced in a superfluid proximity system consisting of aerogel and superfluid ³He-B. Using the quasiclassical theory of superfluidity, we analyze Pauli spin susceptibility around the aerogel-superfluid interface. It is shown that the spin susceptibility is enhanced by the formation of the odd-frequency s-wave pairs. As a result, a local peak of the spin susceptibility grows around the interface with decreasing temperature. We discuss how we can detect the odd-frequency pairs via the measurements of the spin susceptibility.

Section: QF - Quantum Fluids

Keywords: odd-frequency pairing, proximity effect, superfluid ³He, aerogel