Lattice Relaxation in Solid ⁴He — Effect on Dynamics of ³He Impurities

N. S. Sullivan^a, D. Candela^b, S. S. Kim^c, C. Huan^d, L. Yin^a, and J. S. Xia^a

^aDepartment of Physics, University of Florida, Gainesville, USA.

^bDepartment of Physics, University of Massachusetts, Amherst, USA.

^cÈcole Polytechnique Fèdèrale de Lausanne, Lausanne, Switzerland.

^dDepartment of Physics, Georgia Institute of Technology, Atlanta, USA.

We review the effect of lattice relaxation that accompanies the quantum tunneling of ³He impurities in solid ⁴He on the nuclear spin-lattice relaxation of the ³He impurities for very low impurity concentrations. As a result of the larger zero point motion of the ³He impurity compared to the ⁴He atoms, a significant lattice distortion accompanies the impurity as it moves through the lattice and the dynamics of the impurity depends on both the interaction energy between two ³He atoms and on the relaxation of the lattice for the tuneling impurity. Using a phenomenological model for the lattice relaxation we compare the observed nuclear spin-lattice relaxation rates observed at low temperatures with the dependence on temperature expected for a ⁴He lattice relaxation comparable to that observed by Beamish *et al.*[1]

1. O. Syshchenko, O., Day, J. and Beamish, J. Phys. Rev. Lett. 104,195301 (2009).

Section: QS - Quantum solids

Keywords: lattice relaxation, nuclear spin-lattice, tunneling