Interaction of Excimer He $_2^*$ Molecules with Vortex Lines in Superfluid ${}^4\mathrm{He}$ at $T<0.2~\mathrm{K}$

D. E. Zmeev^a, <u>F. Pakpour</u>^a, P. M. Walmsley^a, A. I. Golov^a, W. Guo^b, D. N. McKinsey^c, G. G. Ihas^d, P.V. E. McClintock^e, S. N. Fisher^e, and W. F. Vinen^f

^aSchool of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
^bMechanical Engineering Department, Florida State University, Tallahassee, Florida 32310-6046, USA
^cDepartment of Physics, Yale University, New Haven, Connecticut 06520-8120, USA
^dDepartment of Physics, University of Florida, Gainesville, Florida 32611-8440, USA
^eDepartment of Physics, Lancaster University, Lancaster LA1 4YB, UK

^fSchool of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

We have studied the interaction of metastable spin-triplet He^{*}₂ molecules with quantized vortices in superfluid ⁴He in the zero temperature limit. The molecules were generated during an injection of electrons from a sharp metal tip at high voltage, and detected as current into a metal collector after their ionization in high electric field. The molecules were only detected at temperatures T < 0.2 K. The presence of ³He impurities at the level of 0.3 ppb strongly suppressed the detected signal; the temperature dependence of the detected signal revealed a sharp peak, most probably associated with the condensation of ³He atoms on vortex cores. The vortices were created by either rotation or ion injection. The trapping diameter of the molecules on quantized vortices was found to be 96 ± 6 nm at pressure of 0.1 bar and 27 ± 5 nm at 5.0 bar. We have also demonstrated that a moving tangle of vortices can carry the molecules through the superfluid helium [1].

1. D. E. Zmeev et al., Phys. Rev. Lett. 110, 175303 (2013).

Section: VT - Vortices and turbulence

Keywords: quantum turbulence, excimer molecules, superfluid helium