Response of a Mechanical Oscillator in Solid ⁴He

<u>S. Ahlstrom</u>^{*a*}, D. I. Bradley^{*a*}, M. Človečko^{*b*}, S.N. Fisher^{*a*}, E. Guise^{*a*}, A. M. Guénault^{*a*}, R. P. Haley^{*a*}, O. Kolosov^{*a*}, M. Kumar^{*a*}, P. V. E McClintock^{*a*}, G. R. Pickett^{*a*}, M. Poole^{*a*}, V. Tsepelin^{*a*}, and A. Woods^{*a*}

^aDepartment of Physics, Lancaster University, Lancaster, LA1 4YB, UK ^bPresent address: Slovak Academy of Sciences, Kosice, Slovakia

We present the first measurements of the response of a mechanical oscillator in solid ⁴He. We use a lithium niobate tuning fork operating in its fundamental resonance mode at a frequency of around 30 kHz. Measurements in solid ⁴He were performed close to the melting pressure. The tuning fork resonance shows substantial frequency shifts on cooling from around 1.5 K to below 10 mK. The response shows an abrupt change at the bcc-hcp transition at around 1.46 K. At low temperatures, below around 100 mK, the resonance splits into several overlapping resonances.

Section: QS - Quantum solids

Keywords: solid helium, tuning fork, bcc-hcp phase transition