Dynamics of a particle and a quantized vortex at zero temperature : self-consistent calculation

<u>N. Yamasaki^a</u> and M. Tsubota^{a,b}

^aDepartment of Physics, Osaka City University, Japan

^bThe OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Japan

Many experiments for visualizing quantized vortices and normal fluid flow have been performed in superfluid ⁴He. Recently, metastable He₂ excimer molecules are used as tracer particles¹. As their radius is only about 10^{-10} m, they hardly perturb the system, thus being a good candidate of tracer particles. In order to understand the interactive motion of He₂ molecules and vortices at zero temperature, we numerically study the trapping diameter by using the self-consistent equations of motions. We calculated the trapping diameter as a function of the initial velocity of the particle. The trapping diameter is almost inversely proportional to the initial velocity of the particle and compared with the observation.

1. D. E. Zmeev et al, *Phys. Rev. Lett.* **110**, 175303, (2013).

Section: VT - Vortices and turbulence

Keywords: quantized vortex, superfluid, trapping diameter