Non-Fermi Liquid Nature of the Two-dimensional Dipolar Fermi Gas

J. Boronat^{*a*} and <u>E. Krotscheck^{*b*,*c*}</sub></u>

^aDepartament de Física i Enginyeria Nuclear, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain ^bDepartment of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, USA

 $^{c}\mbox{Institute}$ for Thoretical Physics, Johannes Kepler University, Linz, Austria

We have performed ground state calculations using the Fermi hypernetted-chain Euler-Lagrange method and fixed-mode Diffusion Monte Carlo calculations for the two-dimensional single-component dipolar Fermi gas. We find that already at very low densities the system has a topological instability of the Fermi disk against particle-hole excitations.

Section: QG - Quantum gases

Keywords: phase transition, quantum gas, dipole interaction