Spinodal decomposition of two-dimensional ³He at low densities

F. M. Gasparini^{*a*}, R. Holler^{*b*}, and <u>E. Krotscheck^{*a*,*b*}</sub></u>

^aDepartment of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, USA ^bInstitute for Thoretical Physics, Johannes Kepler University, Linz, Austria

Recent experiments¹ on quasi-two-dimensional ³He absorbed on graphite and on graphite pre-plated with ⁴He, as well as earlier experiments² with ³He on a non-crystalline substrate suggest that there is a liquid-gas phase transition at low densities³. The result has received wide attention⁴ since it is counter-intuitive because two-dimensional ³He is generally believed to be a gas. Effects like the enhancement of two-particle binding due to the finite width of the ³He holding potential⁵ and phonon-exchange are not strong enough to produce sufficient binding which would lead to a condensed phase.

However, in the presence of a substrate, the ³He acquires an effective mass, either from the band structure of the underlying substrate, or from hydrodynamic backflow of ⁴He. We show that even a small effective mass of $m^* = 1.06m_{\text{He}_3}$ is, at T = 0, sufficient to produce a spinodal instability of the ³He which leads to a condensed phase.

- 1. D. Sato, K. Naruse, T. Matsui, and Hiroshi Fukuyama, Phys. Rev. Lett. 109, 235306 (2012).
- 2. B. Bhattacharyya and F. M. Gasparini, Phys. Rev. Lett. 49, 919 (1982).
- 3. A. D. Smart, Physics Today 66, 15 (2013).
- 4. V. Grau, J. Boronat and J. Casulleras, Phys. Rev. Lett. 89, 045301 (2002).
- 5. S. Kilić, E. Krotscheck, and L. Vranješ, J. Low Temp. Phys. **119** 715 (2000).

Section: QF - Quantum Fluids

Keywords: Low-density ³He, phase transition