Confined ⁴He Near T_{λ} : Scaling, Coupling and Proximity Effects

Francis M. Gasparini

University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA

When ⁴He is confined to a small uniform dimension L, its thermodynamic behavior near the superfluid transition is modified as the correlation length ξ becomes comparable to L. This can be described by crossover functions from three dimensions to a lower dimension. These functions depend only on the ratio ξ/L . This has been verified most extensively for the case where L represents the thickness of a film and the crossover dimension is two.¹ A more complex situation where two regions of ⁴He are in contact, each characterized by a different L, allows one to study proximity effects and the coupling of one region with another through a 'weak link'. Recent measurements have shown that these effects are governed by the finite-size correlation length $\xi(t, L)$, where $t = |1 - T/T_{\lambda}|$; and, quite surprisingly, that the effects extend to distances over an order of magnitude larger than ξ .^{2,3} This cannot be understood in terms of a mean field approach and must be due to the role of fluctuations at the superfluid transition. The long range of this effect is not understood at present. This behavior distinguishes ⁴He from analogous behavior in the case of low temperature superconductors where such effects are on the scale of ξ/L .

F. M. Gasparini, M. O. Kimball, K. P. Mooney, and M. Diaz-Avila, Rev. Mod. Phys. 80, 1009 (2008).
J. K. Perron, F. M. Gasparini, Phys. Rev. Lett. 109, 035302, (2012).

3. J. K. Perron, M. O. Kimball, K. P. Mooney, and F. M. Gasparini, Phys. Rev. B 87, 094507-16 (2013).

Section: LD - Low dimensional and confined systems

Keywords: phase transition, dimensionality, confinement, superfluid, correlation length