Signatures of Majorana Surface States of Superfluid ³He-B

Hao Wu and J. A. Sauls

Department of Physics and Astronomy, Northwestern University, USA

We report calculations of surface spectrum, spin- and mass current densities originating from the Andreev surface states for confined ³He-B. The surface states are Majorana Fermions with their spins polarized transverse to their direction of propagation along the surface, \vec{p}_{\parallel} . The negative energy states give rise to a ground-state helical spin current confined on the surface. The spectral functions reveal the subtle role of the spin-polarized surface states in relation to the ground-state spin current. By contrast, these states do not contribute to the T = 0 mass current. Superfluid flow through a channel of width $D > D_c \approx 10\xi_0$ of confined ³He-B is characterized by the flow field, $\vec{p}_s = \hbar \vec{\nabla} \vartheta$, where $\vartheta(\vec{r})$ is the global phase of the B-phase Cooper pairs. The flow field breaks $SO(2)_{L_z+S_z}$ rotational symmetry, as well time reversal symmetry (\mathcal{T}) and particle-hole symmetry (\mathcal{C}). However, the Bogoliubov-Nambu Hamiltonian remains invariant under the combined (chiral) symmetry, $\Gamma = \mathcal{CT}$. As a result the B-phase in the presence of a superflow remains a topological phase with a gapless spectrum of Majorana modes on the surface. Thermal excitation of the Doppler shifted Majorana branches leads to a power law suppression of the superfluid mass current for $0 < T \leq 0.5T_c$, providing a direct signature of the Majorana branches of surface excitations in the fully gapped 3D topological superfluid, ³He-B. Quantitative results will be presented for the superfluid fraction (mass current), helical spin current and heat capacity of confined ³He, including the temperature dependences, as well as dependences on confinement, surface scattering and pressure.

Supported by NSF Grant: DMR-1106315.

Section: QF - Quantum Fluids

Keywords: Topological Superfluid, Andreev states, Majorana Fermions, Spin Current, Superflow