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Abstract

The paper is concerned with turbulence in a superfluid, in which flow is strongly influenced by the quantum effects
that give rise to two-fluid behaviour, frictionless flow of the superfluid component, and restrictions on rotational
motion. There is now significant experimental evidence relating to simple forms of turbulent flow in superfluid
4He in circumstances where comparison is possible with an analogous flow in a classical fluid. The similarities and
differences are analyzed, and the evidence is assessed for quasi-classical behaviour at large length scales in the
quantum case. Dissipative processes at small length scales in the superfluid are discussed; they are shown to lead
to an effective viscosity but to be based on novel quantum processes. The need for further experiments, especially
at very low temperatures and in superfluid 3He-B, is emphasized.
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1. Introduction: turbulence in a classical fluid

Turbulence in classical fluids has long been an active
and important field of study. Turbulence in a super-
fluid (quantum turbulence) has also been studied for
many years, but only, for the most part, in connection
with counterflow of the normal and superfluid compo-
nents, where there is no classical analogue. It is only
rather recently that types of turbulent superflow have
been seriously studied for which a classical analogue
does exist. This paper is concerned with such types and
with what turn out to be interesting and instructive
comparisons between the classical and quantum cases.
The paper contains only an outline of the issues in-
volved; details, including references to original papers,
can be found in [1], along with an acknowledgement of
helpful discussions with many friends and colleagues.

Classical turbulence occurs when the appropriate
Reynolds number for the flow is large enough, the
Reynolds number being a measure that characterizes
the ratio of the non-linear inertial term in the Navier-
Stokes equation to the dissipative viscous term. Clas-
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sical turbulence is most easily treated in flows that are
well-removed from any boundaries (free turbulence),
especially in cases where the turbulence is homoge-
neous and isotropic. This latter form of turbulence
can be produced by uniform flow through a grid, at
a distance from the grid that is large compared with
the grid mesh, M . The grid tends to produce turbu-
lence on the scale of M , but the inertial term in the
Navier-Stokes equation couples motion on different
length scales and so causes energy to flow from the
scale M to other scales, both larger and smaller, en-
ergy being conserved as long as the Reynolds number
appropriate to the scale remains large compared with
unity. Flow to larger length scales saturates at the
scale of the channel that contains the flow. Flow to
smaller scales continues, conserving energy, until the
Reynolds number reaches a value of order unity, when
there is dissipation by viscosity. The range of scale
over which energy is conserved is called the inertial
range. The turbulence can be described by various sta-
tistical quantities, of which the simplest is the energy
spectrum, E(k), where E(k)dk is the turbulent energy
associated with wavenumbers in the range dk, and
where we use a Fourier analysis of the velocity field,
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wavenumber k being associated with scale k−1. In the
inertial range of homogeneous, isotropic, turbulence,
in which energy is flowing towards high wavenumbers
at a rate ε per unit mass, the energy spectrum takes
the Kolmogorov form, at least approximately, given by

E(k) = Cε2/3k−5/3, (1)

where C is a dimensionless constant equal to about
1.5. This form of spectrum can be justified on dimen-
sional grounds if it is assumed that within a wide iner-
tial range the flow of energy in k-space takes place in
a cascade, coupling being strong between motion with
neighbouring wavevectors, so that the details of the
way in which energy is fed into the cascade at small
wavenumbers and lost by viscosity at large wavevec-
tors is unimportant over most of the inertial range.
When the Reynolds number of the flow near a partic-
ular wavenumber becomes of order unity, there is dis-
sipation by viscosity, and the inertial range is termi-
nated. It can be shown that the rate of dissipation of
energy per unit mass is given by

ε = ν〈ω2〉, (2)

where ν is the kinematic viscosity of the fluid and 〈ω2〉
is the mean square vorticity in the fluid (most of the
vorticity is concentrated near the cut off).

2. Turbulence in a superfluid

In the context of turbulence, a superfluid, such as
that formed from 4He, differs from a classical fluid in
three respects: there is two-fluid behaviour; the super-
fluid component can flow without friction; and rota-
tional flow of the superfluid is restricted to quantized
line vortices, each carrying a single quantum of cir-
culation, κ = h/m4. When a vortex line moves rela-
tive to the normal fluid its core experiences a frictional
force, commonly called mutual friction. We can ask
how these differences affect turbulent flow, remember-
ing that such flow is necessarily rotational. We consider
only 4He until section 6.

There are cases where quantum turbulence must be
quite different from any type of classical turbulence, be-
cause it depends on the existence of two velocity fields.
The clearest example is provided by counterflow tur-
bulence, which is set up in superfluid 4He when it car-
ries a heat current, and which is actually maintained
by a relative velocity of the two fluids. In other cases,
however, quantum turbulence might have close classi-
cal analogues, especially if the two fluids flow with the
same velocity or if the temperature is so low that the
normal fluid is effectively absent. Although it has been
suspected for many years that these other cases might

exist, it is only within the past few years that any ex-
amples have been investigated in detail, experimentally
and theoretically. In the rest of this paper we shall first
discuss the two best and simplest examples, focussing
on possible important general conclusions, and then go
on to consider the potentially interesting case of very
low temperatures, which has not yet been the subject
of detailed experimental study.

3. Quasi-classical behaviour on large length
scales

Since turbulence must involve rotational motion,
turbulence in the superfluid component must take the
form of an irregular tangle of quantized vortex lines.
On length scales of order or less than the vortex-line
spacing, �, the superfluid flow field must be very differ-
ent from that in any form of classical turbulence, but
on larger length scales the vortex lines can be arranged
to mimic classical flow patterns, the simplest example
being the uniform array of parallel lines that allows
the superfluid component to rotate with a containing
vessel.

Perhaps the clearest experimental evidence comes
from an experiment by Maurer and Tabeling. They
generated turbulent flow in helium with two, four-
bladed, counter-rotating discs, and they studied the
frequency-spectrum of fluctuations in the fluid pres-
sure at a point well away from the discs with a
”total-head pressure tube”. For a conventional fluid
the spectrum so observed is simply related to the
energy spectrum E(k). The results were remarkable.
There was no observable change in behaviour between
the normal and superfluid phases, down to the lowest
temperature studied, 1.4K. Furthermore, the spec-
trum was essentially of the Kolmogorov form (in the
region of the turbulence near the pressure sensor the
turbulence must therefore have been approximately
homogeneous and isotropic). The pressure sensor had
a size that was significantly larger than �, so this quasi-
classical behaviour related to large length scales. The
only straightforward interpretation is that on these
scales the two fluids have the same classical turbulent
velocity fields. There are two possible reasons. Ac-
cording to the first, the velocity field of the superfluid
component can not only mimic large-scale classical
motion at any particular instant of time, but must also
evolve in time according to classical equations, with-
out any intervention from the normal fluid; mutual
friction ensures simply that two velocity fields remain
accurately locked together. According to the second,
the dynamcs of the superfluid component is not in-
herently classical on large length scales, but classical
behaviour is forced on it by the normal fluid through
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the effect of mutual friction. In view of the observation
that quasi-classical behaviour exists for normal fluid
fractions ranging from unity to values (∼0.07) much
smaller than the superfluid fraction, it seems unlikely
that the second view is tenable. However, final experi-
mental confirmation must await experiments at much
lower temperatures, as described later. In principle,
computer simulations of superfluid turbulence at zero
temperature could settle the issue; those carried out so
far suggest that there can be quasi-classical behaviour,
but they are not able to incorporate a fully adequate
range of length scales.

4. Grid turbulence in a superfluid

The simplest type of classical turbulence is homo-
geneous and isotropic, and can be produced by steady
flow through a grid. Experiments on superfluid grid
turbulence above 1K have recently been reported by
the Oregon group, with results that we now describe
and discuss. The observational tool was the attenua-
tion of second sound by the vortex lines in a particular
small region, as a function of time after a grid had been
towed through the helium. The measurement yields the
time-dependence of the line density in the small region.
This is determined in part by the behaviour of the tur-
bulence on a scale larger than �, and in part by dissipa-
tive processes occurring on the scale � or less. No mea-
surements have yet been attempted of the spectrum of
pressure fluctuations, so there is as yet no direct evi-
dence for quasi-classical behaviour in this case. How-
ever, an extension of the quasi-classical model, incorpo-
rating dissipation on small length scales, does account
for the experimental results, thus providing evidence
in favour of the quasi-classical model and about dissi-
pative processes. It can be argued that these processes,
due in part to the viscosity of the normal fluid and in
part to mutual friction, act on length scales of order
�, mutual friction causing dissipation because on these
scales the velocity fields of the two fluids cannot be the
same. Thus, according to the extended quasi-classical
model, there is an inertial range in which the two flu-
ids have essentially the same velocity fields extending
from length scales comparable with the grid mesh or
the channel width to those of order �. To obtain agree-
ment with experiment the dissipation per unit mass,
taking place on the scale �, is given by

ε = ν′ (κL)2 , (3)

where L is the length of vortex line per unit volume,
equal to �−2. The quantity (κL)2 can be interpreted
as an effective mean square vorticity in the superfluid
component (due to a more or less random array of vor-
tex lines), so that Eq. (3) has a form similar to Eq. (2),

ν′ being an effective kinematic viscosity. Thus there
seems in some sense to be quasi-classical behaviour not
only on scales larger than �, but also in the form taken
by the dissipation on scales of order �. Values of ν′, as
a function of temperature, can be obtained from the
experimental results; putting ν′ = η′/ρ, where ρ is the
total helium density, we find that η′ is of order the
viscosity of the normal fluid but with a quite different
temperature dependence.

The form of Eq. (3) is closely related to an equation
that describes the decay of a random vortex tangle in
counterflow turbulence, namely

dL

dt
= −χ2

κ

2π
L2, (4)

where χ2 is a temperature-dependent dimensionless
parameter of order unity. Values of χ2 were obtained
by Schwarz in his pioneering simulations of counterflow
turbulence for the case where the normal fluid is not
turbulent. Very recently [1] it has been argued that Eq.
(4) should indeed apply also in grid turbulence, and a
simple model has been shown to lead to values of ν′ in
agreement with experiment, at least at temperatures
below about 1.9K.

Above 1K Eq. (4) has the following physical basis.
For a random vortex tangle the only characteristic ve-
locity relating to the motion of the vortex lines is u =
κ/�, if we ignore effects due to curvature of the lines
that introduce only logarithmic corrections. If the nor-
mal fluid is at rest, this motion leads to a dissipation by
mutual friction equal to γu2L per unit volume, where
γ is a friction constant. It can be shown that this leads
to the form of Eq. (4), with χ2 related to the dimen-
sionless parameter γ/ρsκ, where ρs is the density of the
superfluid component. To obtain Eq. (3) we must take
account also of viscous dissipation in the normal fluid,
but this has the effect only of modifying the value of
ν′. We see that, although Eq. (3) has a quasi-classical
form, the physics of the dissipation is different and
more complex than in a classical fluid, involving as it
does both viscous dissipation in the normal fluid and
the frictional interaction between vortex lines and the
normal fluid. This difference has its origin in the fact
that on the length scale � at which dissipation occurs
the turbulent flow of the superfluid must be very dif-
ferent from that of a classical fluid.

The analysis of grid turbulence that we have outlined
provides further evidence in favour of quasi-classical
behaviour on length scales larger than �. But the exper-
iments still relate to temperatures above 1K, where the
normal fluid might be playing a role in forcing quasi-
classical behaviour on the superfluid component. We
turn now to the behaviour of 4He at temperatures well
below 1K, where the normal fluid has effectively dis-
appeared, and where therefore we can study a partic-
ularly ”pure” form of quantum turbulence.
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5. Quantum turbulence at very low
temperatures

This is potentially very interesting for two reasons:
the behaviour of a turbulent superfluid component can
be observed in the complete absence of normal fluid, so
that arguments about quasi-classical behaviour being
imposed by the normal fluid can be settled; and the ab-
sence of both mutual friction and any normal-fluid vis-
cous dissipation leaves us with the problem of finding
another dissipative process by which the turbulent en-
ergy can be lost. Experiments pose challenges because
a study with second sound of the decay of vortex lines
is no longer possible. The only relevant experiment to
date is one at Lancaster, in which turbulence was gen-
erated with an vibrating grid and detected by the trap-
ping of ions on the vortex lines. This experiment shows
that turbulence can be generated with a moving grid,
and that it does decay at a rate not very different from
that at higher temperatures, but further interpretation
has not yet proved possible. There is an urgent need
to develop new experiments and techniques, and sim-
plicity of interpretation points to experiments in which
turbulence is produced by steady flow through a grid.

This almost complete lack of experimental evidence
allows us to indulge unhindered in theoretical specula-
tion. It is our own belief that the experiments will ul-
timately demonstrate quasi-classical behaviour in the
pure superfluid in an inertial range at large length
scales, the presence of any normal fluid being unneces-
sary. This leaves open the mechanism for dissipation at
a sufficiently high wavenumber. We know that any type
of turbulent motion leads to the generation of sound,
so that a promising mechanism is the direct conversion
of the turbulent energy into phonons (or perhaps ro-
tons). A vortex undergoing oscillatory motion can ra-
diate phonons, but it can be shown that the radiation is
extremely weak at frequencies (of order κ/�2) relevant
to vortex motion in a smooth tangle. Much higher fre-
quencies are required, and these can come about only
if energy flows into vortex motion on a length scale
much less than �. It is known from simulations that
the vortices in a tangle will undergo frequent recon-
nections (at a rate per unit volume of order κ�−5), and
it was pointed out by Svistunov that each reconnec-
tion will leave sharp kinks on the reconnecting vortices.
These kinks can be decomposed into a superposition of
harmonic Kelvin waves, covering a wide range of high
wavenumbers and high frequencies. The reconnection
process itself will lead to some phonon (and roton?)
production, which can be shown, however, to be rela-
tively weak. Kelvin waves with a high enough frequency
can certainly radiate phonons very effectively, so theo-
retical development must focus on the rate at which en-
ergy can flow from the tangle at length scale � to these

high-frequency Kelvin waves. The precise mechanisms
are controversial, but we can nevertheless make some
significant general statements. We make the plausible
assumption that each reconnection leads to the trans-
fer of energy of order ev� to the Kelvin waves, where
ev ∼ ρsκ

2 is the energy per unit length of vortex at a
very low temperature. We use the fact that the rate of
reconnection is of order κ�−5 per unit volume. And we
assume that transferred energy is ultimately dissipated
into phonons. Then the rate of loss of energy is easily
seen to be of order κ3�−4 per unit mass of helium. If
the relationship L = �−2 were to hold, this loss would
have the same form as the quasi-classical expression,
Eq. (3), with ν′ = κ. However, this relationship be-
tween L and � is not now quite correct, because it fails
to take account of the fact that the lines in the tangle
are not smooth but are crinkled by the presence of the
Kelvin waves; this leads to an increase in L, for given
�, so that L = g�−2 where the factor g is greater than
unity. If g is a constant, then Eq. (3) continues to hold,
but with ν′ = κ/g2. The details of the process by which
energy flows from the scale � to that corresponding to
the wavelength at which Kelvin waves radiate phonons
efficiently are contained in the factor g. Since κ has the
same order of magnitude as ν′ measured at tempera-
tures above 1K, we see that the rate of dissipation of
energy may indeed be rather similar at extremely low
temperatures to its value above 1K, as seems to be ob-
served by the Lancaster group. This picture has been
confirmed, at least in part, in computer simulations by
Tsubota et al, which are described in another paper
at this Conference; but these simulations do not have
the spatial resolution required to see the details of the
phonon radiation, which must occur on a very small
length scale. On the experimental side, much more de-
tailed measurements must now be carried out at very
low temperatures to check both the general principles
underlying our thinking and the details. The details
are of considerable interest, because they involve pro-
cesses that are novel to superfluid physics.

6. Turbulence in superfluid 3He-B

In the present context we can regard 3He-B as dif-
fering from superfluid 4He in two respects: the normal
fluid is much more viscous; and the vortex core param-
eter (coherence length) is much larger. The substantial
consequences are discussed in [1], and again there is a
need for experiments at very low temperatures.
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